ﻻ يوجد ملخص باللغة العربية
The Spectral Energy Distribution (SED) mode of the Multiband Imaging Photometer for Spitzer (MIPS) Space Telescope provides low-spectral resolution (R ~ 15-25) spectroscopy in the far infrared using the MIPS 70 um detector. A reflective grating provides a dispersion of 1.7 um per pixel, and an effective wavelength coverage of 52.8--98.7 um over detector rows 1-27. The final 5 detector rows are contaminated by second-order diffracted light and are left uncalibrated. The flux calibration is based on observations of MIPS calibration stars with 70 um flux densities of 0.5--15 Jy. The point-source flux calibration accuracy is estimated to be 10% or better down to about 0.5 Jy at the blue end of the spectrum and to 2 Jy near the red end. With additional uncertainties from the illumination and aperture corrections included, the surface brightness calibration of extended sources is accurate to ~15%. Repeatability of better than 5% is found for the SED mode through multiple measurements of several calibration stars.
The absolute calibration and characterization of the Multiband Imaging Photometer for Spitzer (MIPS) 70 micron coarse- and fine-scale imaging modes are presented based on over 2.5 years of observations. Accurate photometry (especially for faint sourc
We present the stellar calibrator sample and the conversion from instrumental to physical units for the 24 micron channel of the Multiband Imaging Photometer for Spitzer (MIPS). The primary calibrators are A stars, and the calibration factor based on
We describe the absolute calibration of the Multiband Imaging Photometer for Spitzer (MIPS) 160 micron channel. After the on-orbit discovery of a near-IR ghost image that dominates the signal for sources hotter than about 2000 K, we adopted a strateg
We describe data reduction and analysis of fluctuations in the cosmic far-IR background (CFIB) in observations with the Multiband Imaging Photometer for Spitzer (MIPS) instrument 160 micron detectors. We analyzed observations of an 8.5 square degree
We make predictions for the cosmological surveys to be conducted by MIPS/SIRTF at 24, 70 and 160 microns, for the GTO and the legacy programs, using the latest knowledge of the instrument. In addition to detector and cirrus confusion noise, we discus