ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparison of the s- and r-process element evolution in local dwarf spheroidal galaxies and in the Milky Way

38   0   0.0 ( 0 )
 نشر من قبل Gustavo A. Lanfranchi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the nucleosynthesis of several neutron capture elements (barium, europium, lanthanum, and yttrium) in local group dwarf spheroidal (dSph) galaxies and in the Milky Way by comparing the evolution of [Ba/Fe], [Eu/Fe], [La/Fe], [Y/Fe], [Ba/Y], [Ba/Eu], [Y/Eu], and [La/Eu] observed in dSph galaxies and in our Galaxy with predictions of detailed chemical evolution models. The models for all dSph galaxies and for the Milky Way are able to reproduce several observational features of these galaxies, such as a series of abundance ratios and the stellar metallicities distributions. The Milky Way model adopts the two-infall scenario, whereas the most important features of the models for the dSph galaxies are the low star-formation rate and the occurrence of intense galactic winds. We predict that the [s-r/Fe] ratios in dSphs are generally different than the corresponding ratios in the Milky Way, at the same [Fe/H] values. This is interpreted as a consequence of the time-delay model coupled with different star formation histories. In particular, the star-formation is less efficient in dSphs than in our Galaxy and it is influenced by strong galactic winds. Our predictions are in very good agreement with the available observational data. The time-delay model for the galactic chemical enrichment coupled with different histories of star formation in different galaxies allow us to succesfully interpret the observed differences in the abundance ratios of s- and r- process elements, as well as of $alpha$-elements in dSphs and in the Milky Way. These differences strongly suggest that the main stellar populations of these galaxies could not have had a common origin and, consequently, that the progenitors of local dSphs might not be the same objects as the building blocks of our Galaxy.

قيم البحث

اقرأ أيضاً

The rapid neutron-capture process (r-process) is a major process to synthesize elements heavier than iron, but the astrophysical site(s) of r-process is not identified yet. Neutron star mergers (NSMs) are suggested to be a major r-process site from n ucleosynthesis studies. Previous chemical evolution studies however require unlikely short merger time of NSMs to reproduce the observed large star-to-star scatters in the abundance ratios of r-process elements relative to iron, [Eu/Fe], of extremely metal-poor stars in the Milky Way (MW) halo. This problem can be solved by considering chemical evolution in dwarf spheroidal galaxies (dSphs) which would be building blocks of the MW and have lower star formation efficiencies than the MW halo. We demonstrate that enrichment of r-process elements in dSphs by NSMs using an N-body/smoothed particle hydrodynamics code. Our high-resolution model reproduces the observed [Eu/Fe] by NSMs with a merger time of 100 Myr when the effect of metal mixing is taken into account. This is because metallicity is not correlated with time up to ~ 300 Myr from the start of the simulation due to low star formation efficiency in dSphs. We also confirm that this model is consistent with observed properties of dSphs such as radial profiles and metallicity distribution. The merger time and the Galactic rate of NSMs are suggested to be <~ 300 Myr and ~ $10^{-4}$ yr$^{-1}$, which are consistent with the values suggested by population synthesis and nucleosynthesis studies. This study supports that NSMs are the major astrophysical site of r-process.
We have found that the high velocity dispersions of dwarf spheroidal galaxies (dSphs) can be well explained by Milky Way (MW) tidal shocks, which reproduce precisely the gravitational acceleration previously attributed to dark matter (DM). Here we su mmarize the main results of Hammer et al. (2019) who studied the main scaling relations of dSphs and show how dark-matter free galaxies in departure from equilibrium reproduce them well, while they appear to be challenging for the DM model. These results are consistent with our most recent knowledge about dSph past histories, including their orbits, their past star formation history and their progenitors, which are likely tiny dwarf irregular galaxies.
170 - Maude Gull 2021
We present high-resolution Magellan/MIKE spectra of 22 bright ($9<V<13.5$) metal-poor stars ($-3.18<mbox{[Fe/H]}<-1.37$) in three different stellar streams, the Helmi debris stream, the Helmi trail stream, and the $omega$ Centauri progenitor stream. We augment our Helmi debris sample with results for ten stars by Roederer et al. 2010 (arXiv:1001.1745), for a total of 32 stars. Detailed chemical abundances of light elements as well as heavy neutron-capture elements have been determined for our 22 stars. All three streams contain carbon-enhanced stars. For 13 stars, neutron-capture element lines were detectable and they all show signatures in agreement with the scaled solar $r$-process pattern, albeit with a large spread of $-0.5<mbox{[Eu/Fe]}<+1.3$. Eight of these stars show an additional small $s$-process contribution superposed onto their $r$-process pattern. This could be discerned because of the relatively high $S/N$ of the spectra given that the stars are close by in the halo. Our results suggest that the progenitors of these streams experienced one or more $r$-process events, such as a neutron star merger or another prolific $r$-process source, early on that widely enriched these host systems before their accretion by the Milky Way. The small $s$-process contribution suggests the presence of AGB stars and associated local (inhomogeneous) enrichment as part of the ongoing chemical evolution by low mass stars. Stars in stellar streams may thus be a promising avenue for studying the detailed history of large dwarf galaxies and their role in halo assembly with easily accessible targets for high-quality spectra of many stars.
We investigate the present-day photometric properties of the dwarf spheroidal galaxies in the Local Group. From the analysis of their integrated colours, we consider a possible link between dwarf spheroidals and giant ellipticals. From the analysis o f the V vs (B-V) plot, we search for a possible evolutionary link between dwarf spheroidal galaxies (dSphs) and dwarf irregular galaxies (dIrrs). By means of chemical evolution models combined with a spectro-photometric model, we study the evolution of six Local Group dwarf spheroidal galaxies (Carina, Draco, Sagittarius, Sculptor, Sextans and Ursa Minor). The chemical evolution models, which adopt up-to-date nucleosynthesis from low and intermediate mass stars as well as nucleosynthesis and energetic feedback from supernovae type Ia and II, reproduce several observational constraints of these galaxies, such as abundance ratios versus metallicity and the metallicity distributions. The proposed scenario for the evolution of these galaxies is characterised by low star formation rates and high galactic wind efficiencies. Such a scenario allows us to predict integrated colours and magnitudes which agree with observations. Our results strongly suggest that the first few Gyrs of evolution, when the star formation is most active, are crucial to define the luminosities, colours, and other photometric properties as observed today. After the star formation epoch, the galactic wind sweeps away a large fraction of the gas of each galaxy, which then evolves passively. Our results indicate that it is likely that at a certain stage of their evolution, dSphs and dIrrs presented similar photometric properties. However, after that phase, they evolved along different paths, leading them to their currently disparate properties.
We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the star formation history of five Milky Way dSphs, Sextans, LeoII, Carina, Sculptor and Fornax. For the first time, [Mg/Fe] vs [Fe/H] diagrams derived from high-resolution spectroscopy of hundreds of individual stars are confronted with model predictions. We find that the diversity in dSph properties may well result from intrinsic evolution. We note, however, that the presence of gas in the final state of our simulations, of the order of what is observed in dwarf irregulars, calls for removal by external processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا