ترغب بنشر مسار تعليمي؟ اضغط هنا

R-process-rich stellar streams in the Milky Way

171   0   0.0 ( 0 )
 نشر من قبل Maude Gull
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Maude Gull




اسأل ChatGPT حول البحث

We present high-resolution Magellan/MIKE spectra of 22 bright ($9<V<13.5$) metal-poor stars ($-3.18<mbox{[Fe/H]}<-1.37$) in three different stellar streams, the Helmi debris stream, the Helmi trail stream, and the $omega$ Centauri progenitor stream. We augment our Helmi debris sample with results for ten stars by Roederer et al. 2010 (arXiv:1001.1745), for a total of 32 stars. Detailed chemical abundances of light elements as well as heavy neutron-capture elements have been determined for our 22 stars. All three streams contain carbon-enhanced stars. For 13 stars, neutron-capture element lines were detectable and they all show signatures in agreement with the scaled solar $r$-process pattern, albeit with a large spread of $-0.5<mbox{[Eu/Fe]}<+1.3$. Eight of these stars show an additional small $s$-process contribution superposed onto their $r$-process pattern. This could be discerned because of the relatively high $S/N$ of the spectra given that the stars are close by in the halo. Our results suggest that the progenitors of these streams experienced one or more $r$-process events, such as a neutron star merger or another prolific $r$-process source, early on that widely enriched these host systems before their accretion by the Milky Way. The small $s$-process contribution suggests the presence of AGB stars and associated local (inhomogeneous) enrichment as part of the ongoing chemical evolution by low mass stars. Stars in stellar streams may thus be a promising avenue for studying the detailed history of large dwarf galaxies and their role in halo assembly with easily accessible targets for high-quality spectra of many stars.



قيم البحث

اقرأ أيضاً

102 - Angus Beane , Melissa K. Ness , 2018
The orbital properties of stars in the disk are signatures of their formation, but they are also expected to change over time due to the dynamical evolution of the Galaxy. Stellar orbits can be quantified by three dynamical actions, J_r, L_z, and J_z , which provide measures of the orbital eccentricity, guiding radius, and non-planarity, respectively. Changes in these dynamical actions over time reflect the strength and efficiency of the evolutionary processes that drive stellar redistributions. We examine how dynamical actions of stars are correlated with their age using two samples of stars with well-determined ages: 78 solar twin stars (with ages to ~5%) and 4376 stars from the APOKASC2 sample (~20%). We compute actions using spectroscopic radial velocities from previous surveys and parallax and proper motion measurements from Gaia DR2. We find weak gradients in all actions with stellar age, of (7.51 +/- 0.52, -29.0 +/- 1.83, 1.54 +/- 0.18) kpc km/s/Gyr for J_r, L_z, and J_z, respectively. There is, however, significant scatter in the action-age relation. We caution that our results will be affected by the restricted spatial extent of our sample, particularly in the case of J_z. Nevertheless, these action-age gradients and their associated variances provide strong constraints on the efficiency of the mechanisms that drive the redistribution of stellar orbits over time and demonstrate that actions are informative as to stellar age. The shallow action-age gradients combined with the large dispersion in each action at a given age, however, renders the prospect of age inference from orbits of individual stars bleak. Using the precision measurements of [Fe/H] and [$alpha$/Fe] for our stars we investigate the abundance-action relationship and find weak correlations. Similar to our stellar age results, dynamical actions afford little discriminating power between low- and high-$alpha$ stars.
We give here the Table of Contents and clickable links to papers of the proceedings from the workshop Asteroseismology of Stellar Populations in the Milky Way, held in Sesto, 22-26 July 2013. The aim of this workshop was to foster collaborations an d discussions between expert researchers in Galactic evolution, specialists in stellar structure and asteroseismology, and key representatives of extensive ground-based spectroscopic surveys such as APOGEE and the ESO-Gaia Spectroscopic Survey. The workshop was devoted to discussing first results achieved by combining spectroscopic and seismic constraints on populations of stars observed by CoRoT and Kepler, and the relevance of CoRoT and Kepler surveys in the context of future Gaia observations.
105 - Ian U. Roederer 2016
The ultra-faint dwarf galaxy Reticulum 2 (Ret 2) was recently discovered in images obtained by the Dark Energy Survey. We have observed the four brightest red giants in Ret 2 at high spectral resolution using the Michigan/Magellan Fiber System. We pr esent detailed abundances for as many as 20 elements per star, including 12 elements heavier than the Fe group. We confirm previous detection of high levels of r-process material in Ret 2 (mean [Eu/Fe]=+1.69+/-0.05) found in three of these stars (mean [Fe/H]=-2.88+/-0.10). The abundances closely match the r-process pattern found in the well-studied metal-poor halo star CS22892-052. Such r-process-enhanced stars have not been found in any other ultra-faint dwarf galaxy, though their existence has been predicted by at least one model. The fourth star in Ret 2 ([Fe/H]=-3.42+/-0.20) contains only trace amounts of Sr ([Sr/Fe]=-1.73+/-0.43) and no detectable heavier elements. One r-process enhanced star is also enhanced in C (natal [C/Fe]=+1.1). This is only the third such star known, which suggests that the nucleosynthesis sites leading to C and r-process enhancements are decoupled. The r-process-deficient star is enhanced in Mg ([Mg/Fe]=+0.81+/-0.14), and the other three stars show normal levels of alpha-enhancement (mean [Mg/Fe]=+0.34+/-0.03). The abundances of other alpha and Fe-group elements closely resemble those in ultra-faint dwarf galaxies and metal-poor halo stars, suggesting that the nucleosynthesis that led to the large r-process enhancements either produced no light elements or produced light-element abundance signatures indistinguishable from normal supernovae.
The relations between star formation and properties of molecular clouds are studied based on a sample of star forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated mol ecular clouds and dense clumps. Radio continuum and mid-infrared emission were used to determine star formation rates, while 13CO and submillimeter dust continuum emission were used to obtain masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. We also test two specific theoretical models, one relying on the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star forming regions and extragalactic data. The star formation efficiency, defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas.
The total population of Wolf-Rayet (WR) stars in the Galaxy is predicted by models to be as many as $sim$6000 stars, and yet the number of catalogued WR stars as a result of optical surveys was far lower than this ($sim$200) at the turn of this centu ry. When beginning our WR searches using infrared techniques it was not clear whether WR number predictions were too optimistic or whether there was more hidden behind interstellar and circumstellar extinction. During the last decade we pioneered a technique of exploiting the near- and mid-infrared continuum colours for individual point sources provided by large-format surveys of the Galaxy, including 2MASS and Spitzer/GLIMPSE, to pierce through the dust and reveal newly discovered WR stars throughout the Galactic Plane. The key item to the colour discrimination is via the characteristic infrared spectral index produced by the strong winds of the WR stars, combined with dust extinction, which place WR stars in a relatively depopulated area of infrared colour-colour diagrams. The use of the Spitzer/GLIMPSE 8$mu$m and, more recently, WISE 22$mu$m fluxes together with cross-referencing with X-ray measurements in selected Galactic regions have enabled improved candidate lists that increased our confirmation success rate, achieved via follow-up infrared and optical spectroscopy. To date a total of 102 new WR stars have been found with many more candidates still available for follow-up. This constitutes an addition of $sim$16% to the current inventory of 642 Galactic WR stars. In this talk we review our methods and provide some new results and a preliminary review of their stellar and interstellar medium environments. We provide a roadmap for the future of this search, including statistical modeling, and what we can add to star formation and high mass star evolution studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا