ترغب بنشر مسار تعليمي؟ اضغط هنا

VERITAS Observations of the gamma-Ray Binary LS I +61 303

138   0   0.0 ( 0 )
 نشر من قبل Gernot Maier
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array of imaging air-Cherenkov telescopes. A signal of gamma-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV corresponding to 15-20% of the flux from the Crab Nebula.



قيم البحث

اقرأ أيضاً

176 - V. A. Acciari , E. Aliu , T. Arlen 2011
We present the results of observations of the TeV binary LS I +61 303 with the VERITAS telescope array between 2008 and 2010, at energies above 300 GeV. In the past, both ground-based gamma-ray telescopes VERITAS and MAGIC have reported detections of TeV emission near the apastron phases of the binary orbit. The observations presented here show no strong evidence for TeV emission during these orbital phases; however, during observations taken in late 2010, significant emission was detected from the source close to the phase of superior conjunction (much closer to periastron passage) at a 5.6 standard deviation (5.6 sigma) post-trials significance. In total, between October 2008 and December 2010 a total exposure of 64.5 hours was accumulated with VERITAS on LS I +61 303, resulting in an excess at the 3.3 sigma significance level for constant emission over the entire integrated dataset. The flux upper limits derived for emission during the previously reliably active TeV phases (i.e. close to apastron) are less than 5% of the Crab Nebula flux in the same energy range. This result stands in apparent contrast to previous observations by both MAGIC and VERITAS which detected the source during these phases at >10% of the Crab Nebula flux. During the two year span of observations, a large amount of X-ray data were also accrued on LS I +61 303 by the Swift X-ray Telescope (XRT) and the Rossi X-ray Timing Explorer Timing (RXTE) Proportional Counter Array (PCA). We find no evidence for a correlation between emission in the X-ray and TeV regimes during 20 directly overlapping observations. We also comment on data obtained contemporaneously by the Fermi Large Area Telescope (LAT).
The discovery of emission of TeV gamma rays from X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems. Here we present the pioneering effort of th e MAGIC collaboration to understand the very high energy emission of the prototype system LS I +61 303. We report on the variable nature of the emission from LS I +61 303 and show that this emission is indeed periodic. The system shows regular outburst at TeV energies in phase phi=0.6-0.7 and detect no signal at periastron (phi~ 0.275). Furthermore we find no indication of spectral variation along the orbit of the compact object and the spectral energy distribution is compatible with a simple power law with index Gamma=2.6+-0.2_(stat)+-0.2_(sys). To answer some of the open questions concerning the emission process of the TeV radiation we conducted a multiwavelength campaign with the MAGIC telescope, XMM-Newton, and Swift in September 2007. We detect a simultaneous outburst at X-ray and TeV energies, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the strictly simultaneous X-ray/TeV flux pairs provides r=0.81 -0.21 +0.06. Here we present the observations and discuss the implications of the obtained results to the emission processes in the system.
The TeV gamma-ray binary LS I +61 303, approximately 2 kpc from Earth, consists of a low mass compact object in an eccentric orbit around a massive Be star. LS I +61 303 exhibits modulated VHE gamma-ray emission around its 26.5 days orbit, with stron gest TeV emission during its apastron passage (orbital phases {phi}=0.55-0.65). Multiple flaring episodes with nightly flux variability at TeV energies have been observed since its detection in 2006. GeV, X-ray, and radio emission have been detected along the entire orbit, enabling detailed study of the orbital modulation pattern and its super-orbital period. Previously reported TeV baseline emission and spectral variations may indicate a neutron star flip-flop scenario, in which the binary system switches between accretor and propeller phases at different phases of the orbit. Since September 2007, VERITAS has observed LS I +61 303 over three additional seasons, accruing 220+ hours of data during different parts of its orbit. In this work, we present a summary of recent and long-term VERITAS observations of LS I +61 303. This analysis includes a discussion of the observed variation of TeV emission during different phases of the orbit, and during different superorbital phases.
We present results from a long-term monitoring campaign on the TeV binary LSI +61 303 with VERITAS at energies above 500 GeV, and in the 2-10 keV hard X-ray bands with RXTE and Swift, sampling nine 26.5 day orbital cycles between September 2006 and F ebruary 2008. The binary was observed by VERITAS to be variable, with all integrated observations resulting in a detection at the 8.8 sigma (2006/2007) and 7.3 sigma (2007/2008) significance level for emission above 500 GeV. The source was detected during active periods with flux values ranging from 5 to 20% of the Crab Nebula, varying over the course of a single orbital cycle. Additionally, the observations conducted in the 2007-2008 observing season show marginal evidence (at the 3.6 sigma significance level) for TeV emission outside of the apastron passage of the compact object around the Be star. Contemporaneous hard X-ray observations with RXTE and Swift show large variability with flux values typically varying between 0.5 and 3.0*10^-11 ergs cm^-2 s^-1 over a single orbital cycle. The contemporaneous X-ray and TeV data are examined and it is shown that the TeV sampling is not dense enough to detect a correlation between the two bands.
134 - D. B. Kieda 2021
LS I +61$^circ$ ~303 is one of around ten gamma-ray binaries detected so far which has a spectral energy distribution dominated by MeV-GeV photons. It is located at a distance of 2 kpc and consists of a compact object (black hole or neutron star) in an eccentric orbit around a 10-15 $M_{odot}$ Be star, with an orbital period of 26.496 days. The binary orbit modulates the emission ranging from radio to TeV energies. A second, longer, modulation period of 1667 days (the super-orbital period) has also been detected from radio to TeV observations. The VERITAS imaging atmospheric Cherenkov telescope array has been observing LS I +61$^circ$ ~303 since 2006, and has accumulated a dataset that fully covers the entire orbit. Increased coverage of the source in the very-high-energy band is currently underway to provide more results on the modulation pattern, super-orbital period, and orbit-to-orbit variability at the highest energies. The spectral measurements at the highest energies will reveal more information about gamma-ray production/absorption mechanisms, the nature of the compact object, and the particle acceleration mechanism. Using >150 hrs of VERITAS data, we present a detailed study of the spectral energy distribution and periodic behavior of this rare gamma-ray source type at very-high energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا