ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping graphene with metal contacts

127   0   0.0 ( 0 )
 نشر من قبل Petr Khomyakov A.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Making devices with graphene necessarily involves making contacts with metals. We use density functional theory to study how graphene is doped by adsorption on metal substrates and find that weak bonding on Al, Ag, Cu, Au and Pt, while preserving its unique electronic structure, can still shift the Fermi level with respect to the conical point by $sim 0.5$ eV. At equilibrium separations, the crossover from $p$-type to $n$-type doping occurs for a metal work function of $sim 5.4$ eV, a value much larger than the graphene work function of 4.5 eV. The numerical results for the Fermi level shift in graphene are described very well by a simple analytical model which characterizes the metal solely in terms of its work function, greatly extending their applicability.



قيم البحث

اقرأ أيضاً

To understand the band bending caused by metal contacts, we study the potential and charge density induced in graphene in response to contact with a metal strip. We find that the screening is weak by comparison with a normal metal as a consequence of the ultra-relativistic nature of the electron spectrum near the Fermi energy. The induced potential decays with the distance from the metal contact as x^{-1/2} and x^{-1} for undoped and doped graphene, respectively, breaking its spatial homogeneity. In the contact region the metal contact can give rise to the formation of a p-p, n-n, p-n junction (or with additional gating or impurity doping, even a p-n-p junction) that contributes to the overall resistance of the graphene sample, destroying its electron-hole symmetry. Using the work functions of metal-covered graphene recently calculated by Khomyakov et al. [Phys. Rev. B 79, 195425 (2009)] we predict the boundary potential and junction type for different metal contacts.
114 - Y. H. Lu , P. M. He , Y. P. Feng 2007
Graphene grown on metal surface, Cu(111), with a boron nitride(BN) buffer layer is studied for the first time. Our first-principles calculations reveal that charge is transferred from the copper substrate to graphene through the BN buffer layer which results in a n-doped graphene in the absence of a gate voltage. More importantly, a gap of 0.2 eV which is comparable to that of a typical narrow gap semicondutor opens just 0.5 eV below the Fermi-level at the Dirac point. The Fermi-level can be easily shifted inside this gap to make graphene a semiconductor which is crucial for graphene-based electronic devices. A graphene based p-n junction can be realized with graphene eptaxially grown on metal surface.
The capability to control the type and amount of charge carriers in a material and, in the extreme case, the transition from metal to insulator is one of the key challenges of modern electronics. By employing angle resolved photoemission spectroscopy (ARPES) we find that a reversible metal to insulator transition and a fine tuning of the charge carriers from electrons to holes can be achieved in epitaxial bilayer and single layer graphene by molecular doping. The effects of electron screening and disorder are also discussed. These results demonstrate that epitaxial graphene is suitable for electronics applications, as well as provide new opportunities for studying the hole doping regime of the Dirac cone in graphene.
We achieved ohmic contacts down to 5 K on standard n-doped Ge samples by creating a strongly doped thin Ge layer between the metallic contacts and the Ge substrate. Thanks to the laser doping technique used, Gas Immersion Laser Doping, we could attai n extremely large doping levels above the solubility limit, and thus reduce the metal/doped Ge contact resistance. We tested independently the influence of the doping concentration and doped layer thickness, and showed that the ohmic contact improves when increasing the doping level and is not affected when changing the doped thickness. Furthermore, we characterised the doped Ge/Ge contact, showing that at high doping its contact resistance is the dominant contribution to the total contact resistance.
The electrical properties of graphene are known to be modified by chemical species that interact with it. We investigate the effect of doping of graphene-based devices by toluene (C6H5CH3). We show that this effect has a complicated character. Toluen e is seen to act as a donor, transferring electrons to the graphene. However, the degree of doping is seen to depend on the magnitude and polarity of an electric field applied between the graphene and a nearby electrode. This can be understood in terms of an electrochemical reaction mediated by the graphene crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا