ﻻ يوجد ملخص باللغة العربية
We calculate the dynamic structure factor S (omega, q) of spinless fermions in one dimension with quadratic energy dispersion k^2/2m and long range density-density interaction whose Fourier transform f_q is dominated by small momentum-transfers q << q_0 << k_F. Here q_0 is a momentum-transfer cutoff and k_F is the Fermi momentum. Using functional bosonization and the known properties of symmetrized closed fermion loops, we obtain an expansion of the inverse irreducible polarization to second order in the small parameter q_0 / k_F. In contrast to perturbation theory based on conventional bosonization, our functional bosonization approach is not plagued by mass-shell singularities. For interactions which can be expanded as f_q = f_0 + f_0^{2} q^2/2 + O (q^4) with finite f_0^{2} we show that the momentum scale q_c = 1/ | m f_0^{2} | separates two regimes characterized by a different q-dependence of the width gamma_q of the collective zero sound mode and other features of S (omega, q). For q_c << q << k_F we find that the line-shape in this regime is non-Lorentzian with an overall width gamma_q of order q^3/(m q_c) and a threshold singularity at the lower edge.
We calculate the damping gamma_q of collective density oscillations (zero sound) in a one-dimensional Fermi gas with dimensionless forward scattering interaction F and quadratic energy dispersion k^2 / 2 m at zero temperature. For wave-vectors | q| /
Very few topological systems with long-range couplings have been considered so far due to our lack of analytic approaches. Here we extend the Kitaev chain, a 1D quantum liquid, to infinite-range couplings and study its topological properties. We demo
We demonstrate that the plasmon in one-dimensional Coulomb interacting electron fluids can develop a finite-momentum maxon-roton-like nonmonotonic energy-momentum dispersion. Such an unusual nonmonotonicity arises from the strongly interacting $1/r$
Long-range interacting systems such as nitrogen vacancy centers in diamond and trapped ions serve as useful experimental setups to probe a range of nonequilibrium many-body phenomena. In particular, via driving, various effective Hamiltonians with ph
We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy