ﻻ يوجد ملخص باللغة العربية
There are two basic number sequences which play a major role in the prime number distribution. The first Number Sequence SQ1 contains all prime numbers of the form 6n+5 and the second Number Sequence SQ2 contains all prime numbers of the form 6n+1. All existing prime numbers seem to be contained in these two number sequences, except of the prime numbers 2 and 3. Riemanns Zeta Function also seems to indicate, that there is a logical connection between the mentioned number sequences and the distribution of prime numbers. This connection is indicated by lines in the diagram of the Zeta Function, which are formed by the points s where the Zeta Function is real. Another key role in the distribution of the prime numbers plays the number 5 and its periodic occurrence in the two number sequences SQ1 and SQ2. All non-prime numbers in SQ1 and SQ2 are caused by recurrences of these two number sequences with increasing wave-lengths in themselves, in a similar fashion as Overtones (harmonics) or Undertones derive from a fundamental frequency. On the contrary prime numbers represent spots in these two basic Number Sequences SQ1 and SQ2 where there is no interference caused by these recurring number sequences. The distribution of the non-prime numbers and prime numbers can be described in a graphical way with a -Wave Model- (or Interference Model) -- see Table 2.
We present in this work a heuristic expression for the density of prime numbers. Our expression leads to results which possesses approximately the same precision of the Riemanns function in the domain that goes from 2 to 1010 at least. Instead of usi
Prime Numbers clearly accumulate on defined spiral graphs,which run through the Square Root Spiral. These spiral graphs can be assigned to different spiral-systems, in which all spiral-graphs have the same direction of rotation and the same -- second
The analysis of regularities and randomness in the distribution of prime numbers remains at the research frontiers for many generations of mathematicians from different groups and topical fields. Recently D. Fridman et al. (Am. Math. Mon. 2019, 126:1
This note investigates the prime values of the polynomial $f(t)=qt^2+a$ for any fixed pair of relatively prime integers $ ageq 1$ and $ qgeq 1$ of opposite parity. For a large number $xgeq1$, an asymptotic result of the form $sum_{nleq x^{1/2},, n te
A square, upper-triangular matrix U is a Cholesky root of a matrix M provided U*U=M, where * represents the conjugate transpose. Over finite fields, as well as over the reals, it suffices for U^TU=M. In this paper, we investigate the number of such f