ﻻ يوجد ملخص باللغة العربية
The analysis of regularities and randomness in the distribution of prime numbers remains at the research frontiers for many generations of mathematicians from different groups and topical fields. Recently D. Fridman et al. (Am. Math. Mon. 2019, 126:1, 70-73) have suggested the constant $f_1 = 2.9200509773...$ for generation of the complete sequence of primes with using of a recursive relation for $f_n$ such that the floor function $lfloor f_n rfloor = p_n$, where $p_n$ is the nth prime. Here I present the family of constants $h_n (h_1 = 1.2148208055...)$ such that the ceiling function $lceil h_n rceil = p_n$. The proposed recursive relation for $h_n$ generates the complete sequence of prime numbers. I also show that constants $h_n$ are irrational for all n.
There are two basic number sequences which play a major role in the prime number distribution. The first Number Sequence SQ1 contains all prime numbers of the form 6n+5 and the second Number Sequence SQ2 contains all prime numbers of the form 6n+1. A
This note investigates the prime values of the polynomial $f(t)=qt^2+a$ for any fixed pair of relatively prime integers $ ageq 1$ and $ qgeq 1$ of opposite parity. For a large number $xgeq1$, an asymptotic result of the form $sum_{nleq x^{1/2},, n te
We present in this work a heuristic expression for the density of prime numbers. Our expression leads to results which possesses approximately the same precision of the Riemanns function in the domain that goes from 2 to 1010 at least. Instead of usi
Let $ xgeq 1 $ be a large number, let $ [x]=x-{x} $ be the largest integer function, and let $ varphi(n)$ be the Euler totient function. The result $ sum_{nleq x}varphi([x/n])=(6/pi^2)xlog x+Oleft ( x(log x)^{2/3}(loglog x)^{1/3}right ) $ was proved
Prime Numbers clearly accumulate on defined spiral graphs,which run through the Square Root Spiral. These spiral graphs can be assigned to different spiral-systems, in which all spiral-graphs have the same direction of rotation and the same -- second