ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-loop electroweak Sudakov logarithms for massive fermion scattering

283   0   0.0 ( 0 )
 نشر من قبل Stefano Pozzorini
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the asymptotic behaviour of two-loop electroweak corrections at energies Q >> M_W, where logarithms of the type ln(Q/M_W) become dominant. The calculation of the leading and next-to-leading logarithmic terms for massless and massive fermion-scattering processes is summarized. The derivations are performed diagrammatically within the spontaneously broken electroweak theory. We find that the soft and collinear singularities resulting from photons can be factorized into a QED-like term and that, up to logarithms of the Z-W mass ratio, the effects of symmetry breaking cancel. This result supports resummation prescriptions that are based on a symmetric SU(2)xU(1) theory matched with QED at the electroweak scale.



قيم البحث

اقرأ أيضاً

We study electroweak Sudakov corrections in high energy scattering, and the cancellation between real and virtual Sudakov corrections. Numerical results are given for the case of heavy quark production by gluon collisions involving the rates $gg to t bar t, b bar b, t bar b W, t bar t Z, b bar b Z, t bar t H, b bar b H$. Gauge boson virtual corrections are related to real transverse gauge boson emission, and Higgs virtual corrections to Higgs and longitudinal gauge boson emission. At the LHC, electroweak corrections become important in the TeV regime. At the proposed 100 TeV collider, electroweak interactions enter a new regime, where the corrections are very large and need to be resummed.
We present the analytic evaluation of the two-loop corrections to the amplitude for the scattering of four fermions in Quantum Electrodynamics, $f^- + f^+ + F^- + F^+ to 0$, with $f$ and $F$ representing a massless and a massive lepton, respectively. Dimensional regularization is employed to evaluate the loop integrals. Ultraviolet divergences are removed by renormalizing the coupling constant in the ${overline{text{MS}}}$-scheme, and the lepton mass as well as the external fields in the on-shell scheme. The analytic result for the renormalized amplitude is expressed as Laurent series around $d=4$ space-time dimensions, and contains Generalized Polylogarithms with up to weight four. The structure of the residual infrared divergences of the virtual amplitude is in agreement with the prediction of the Soft Collinear Effective Theory. Our analytic results are an essential ingredient for the computation of the scattering cross section for massive fermion-pair production in massless fermion-pair annihilation, i.e. $f^- f^+ to F^- F^+$, and crossing related processes such as the elastic scattering $f F to f F$, with up to Next-to-Next to Leading Order accuracy.
288 - S. Actis 2007
We evaluate the two-loop corrections to Bhabha scattering from fermion loops in the context of pure Quantum Electrodynamics. The differential cross section is expressed by a small number of Master Integrals with exact dependence on the fermion masses me, mf and the Mandelstam invariants s,t,u. We determine the limit of fixed scattering angle and high energy, assuming the hierarchy of scales me^2 << mf^2 << s,t,u. The numerical result is combined with the available non-fermionic contributions. As a by-product, we provide an independent check of the known electron-loop contributions.
We complete the study of two-loop infrared singularities of scattering amplitudes with an arbitrary number of massive and massless partons in non-abelian gauge theories. To this end, we calculate the universal functions F_1 and f_2, which completely specify the structure of three-parton correlations in the soft anomalous-dimension matrix, at two-loop order in closed analytic form. Both functions are found to be suppressed like O(m^4/s^2) in the limit of small parton masses, in accordance with mass factorization theorems proposed in the literature. On the other hand, they are unsuppressed and diverge logarithmically near the threshold for pair production of two heavy particles. As an application, we calculate the two-loop anomalous-dimension matrix for q q_bar --> t t_bar near threshold and show that it is not diagonal in the s-channel singlet-octet basis.
57 - Stefano Actis 2006
Recent developments in the computation of two-loop master integrals for massive Bhabha scattering are briefly reviewed. We apply a method based on expansions of exact Mellin-Barnes representations and evaluate all planar four-point master integrals i n the approximation of small electron mass at fixed scattering angle for the one-flavor case. The same technique is employed to derive and evaluate also all two-loop masters generated by additional fermion flavors. The approximation is sufficient for the determination of QED two-loop corrections for Bhabha scattering in the kinematics planned to be used for the luminosity determination at the ILC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا