ﻻ يوجد ملخص باللغة العربية
Recent developments in the computation of two-loop master integrals for massive Bhabha scattering are briefly reviewed. We apply a method based on expansions of exact Mellin-Barnes representations and evaluate all planar four-point master integrals in the approximation of small electron mass at fixed scattering angle for the one-flavor case. The same technique is employed to derive and evaluate also all two-loop masters generated by additional fermion flavors. The approximation is sufficient for the determination of QED two-loop corrections for Bhabha scattering in the kinematics planned to be used for the luminosity determination at the ILC.
We evaluate the two-loop corrections to Bhabha scattering from fermion loops in the context of pure Quantum Electrodynamics. The differential cross section is expressed by a small number of Master Integrals with exact dependence on the fermion masses
We present the complete set of planar master integrals relevant to the calculation of three-point functions in four-loop massless Quantum Chromodynamics. Employing direct parametric integrations for a basis of finite integrals, we give analytic resul
We determine the $1/N_f^2$ and $1/N_f^3$ contributions to the QED beta function stemming from the closed set of nested diagrams. At order $1/N_f^2$ we discover a new logarithmic branch-cut closer to the origin when compared to the $1/N_f$ results. Th
We describe the calculation of all planar master integrals that are needed for the computation of NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions. The most complicated representatives of integrals in this cl
We conclude our investigation on the QCD equation of state (EoS) with 2+1 staggered flavors and one-link stout improvement. We extend our previous study [JHEP 0601:089 (2006)] by choosing even finer lattices. These new results [for details see arXiv: