ترغب بنشر مسار تعليمي؟ اضغط هنا

New insights into the X-ray properties of the nearby barred spiral galaxy NGC 1672

201   0   0.0 ( 0 )
 نشر من قبل Leigh Jenkins
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.



قيم البحث

اقرأ أيضاً

We have performed an X-ray study of the nearby barred spiral galaxy NGC1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supp orting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and ATCA ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy, many of which correlate spatially with star-formation in the bar and spiral arms, while two are identified as background galaxies in the HST images. Nine of the X-ray sources are ULXs, with the three brightest (LX > 5E39 erg/s) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC1672 possesses a hard (Gamma~1.5) nuclear X-ray source with a 2-10 keV luminosity of 4E38 erg/s. This is surrounded by an X-ray bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity AGN (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings and nuclear spirals on the fueling of LLAGN.
129 - Lien-Hsuan Lin , Chi Yuan , 2008
NGC 6782 is an early-type barred spiral galaxy exhibiting a rich and complex morphology with multiple ring patterns. To provide a physical understanding of its structure and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that the striking features in NGC 6782 can be reproduced provided that the gas flow is governed by the gravitational potential associated with a slowly rotating strong bar. In particular, the response of the gaseous disk to the bar potential leads to the excitation of spiral density waves at the inner Lindblad resonance giving rise to the appearance of a nearly circular nuclear ring with a pair of dust lanes. For a sufficiently strong bar potential, the inner 4:1 spiral density waves are also excited. The interaction of the higher harmonic waves with the waves excited at the inner Lindblad resonance and confined by the outer Lindblad resonance results in the observed diamond-shaped (or pointy oval) inner ring structure. The overall gas morphology and kinematical features are both well reproduced by the model provided that the pattern speed of the bar is $sim 25$ km s$^{-1}$ kpc$^{-1}$.
NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1 nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes connected to the ri ng extend almost continuously out to the bar. The other ends of the dust lanes attach to two main spiral arms. To provide a physical understanding of its structural and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that many features of the gas morphology and kinematics can be reproduced provided that the gas flow is governed by a gravitational potential associated with a slowly rotating strong bar. By including the self-gravity of the gas disk in our calculation, we have found the starburst ring to be gravitationally unstable which is consistent with the observation in citet{hsieh11}. Our simulations show that the gas inflow rate is 0.17 M$_sun$ yr$^{-1}$ into the region within the starburst ring even after its formation, leading to the coexistence of both a nuclear ring and a circumnuclear disk.
We present new $^{12}$CO(J=1-0) observations of the barred galaxy NGC 4303 using the Nobeyama 45m telescope (NRO45) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The H$alpha$ images of barred spiral galaxies often show act ive star formation in spiral arms, but less so in bars. We quantify the difference by measuring star formation rate and efficiency at a scale where local star formation is spatially resolved. Our CO map covers the central 2$farcm$3 region of the galaxy; the combination of NRO45 and CARMA provides a high fidelity image, enabling accurate measurements of molecular gas surface density. We find that star formation rate and efficiency are twice as high in the spiral arms as in the bar. We discuss this difference in the context of the Kennicutt-Schimidt (KS) law, which indicates a constant star formation rate at a given gas surface density. The KS law breaks down at our native resolution ($sim$ 250 pc), and substantial smoothing (to 500 pc) is necessary to reproduce the KS law, although with greater scatter.
142 - M. Ehle 1997
The nearly face-on SBc galaxy M83 (NGC 5236) was observed for 25 ksec with the ROSAT PSPC. We detected 13 point-like sources in this galaxy, 10 of which were previously unknown. We measured extended X-ray radiation from almost the whole optically vis ible galaxy. Comparing the diffuse soft and hard X-ray emission components, we observed a different asymmetric distribution and a slower radial decrease of the intensity profile of the soft X-ray emission. Both these results support the existence of a huge spherical gas halo of 10-15 kpc radius. On the other hand, the radial scale lengths of the hard X-ray radiation, that of the thermal radio emission and the profile of the optical surface brightness are similar, favouring the idea that all these emission processes are connected to star formation in the galaxys disk. M83 is the first face-on galaxy where the diffuse X-ray emission spectrum can be characterized by a two-temperature thermal plasma: a soft X-ray emitting warm `halo component and an internally absorbed hot `disk component which is dominating the emission in the hard (0.5-2.0 keV) ROSAT energy range. The combination of X-ray and radio polarization observations allows an estimate of the plasma parameter beta = U_therm/U_magn which is found to be 0.2+/-0.1. This result supports the hypothesis that magnetic fields play an important role for the evolution and structure of galactic gas haloes. The high energy input rate in the active star-forming disk of M83 seems to be responsible for the outflow of hot gas and the halo formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا