ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamical Simulations of the Barred Spiral Galaxy NGC 6782

72   0   0.0 ( 0 )
 نشر من قبل Lien-Hsuan Lin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC 6782 is an early-type barred spiral galaxy exhibiting a rich and complex morphology with multiple ring patterns. To provide a physical understanding of its structure and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that the striking features in NGC 6782 can be reproduced provided that the gas flow is governed by the gravitational potential associated with a slowly rotating strong bar. In particular, the response of the gaseous disk to the bar potential leads to the excitation of spiral density waves at the inner Lindblad resonance giving rise to the appearance of a nearly circular nuclear ring with a pair of dust lanes. For a sufficiently strong bar potential, the inner 4:1 spiral density waves are also excited. The interaction of the higher harmonic waves with the waves excited at the inner Lindblad resonance and confined by the outer Lindblad resonance results in the observed diamond-shaped (or pointy oval) inner ring structure. The overall gas morphology and kinematical features are both well reproduced by the model provided that the pattern speed of the bar is $sim 25$ km s$^{-1}$ kpc$^{-1}$.

قيم البحث

اقرأ أيضاً

NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1 nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes connected to the ri ng extend almost continuously out to the bar. The other ends of the dust lanes attach to two main spiral arms. To provide a physical understanding of its structural and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that many features of the gas morphology and kinematics can be reproduced provided that the gas flow is governed by a gravitational potential associated with a slowly rotating strong bar. By including the self-gravity of the gas disk in our calculation, we have found the starburst ring to be gravitationally unstable which is consistent with the observation in citet{hsieh11}. Our simulations show that the gas inflow rate is 0.17 M$_sun$ yr$^{-1}$ into the region within the starburst ring even after its formation, leading to the coexistence of both a nuclear ring and a circumnuclear disk.
We present new $^{12}$CO(J=1-0) observations of the barred galaxy NGC 4303 using the Nobeyama 45m telescope (NRO45) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The H$alpha$ images of barred spiral galaxies often show act ive star formation in spiral arms, but less so in bars. We quantify the difference by measuring star formation rate and efficiency at a scale where local star formation is spatially resolved. Our CO map covers the central 2$farcm$3 region of the galaxy; the combination of NRO45 and CARMA provides a high fidelity image, enabling accurate measurements of molecular gas surface density. We find that star formation rate and efficiency are twice as high in the spiral arms as in the bar. We discuss this difference in the context of the Kennicutt-Schimidt (KS) law, which indicates a constant star formation rate at a given gas surface density. The KS law breaks down at our native resolution ($sim$ 250 pc), and substantial smoothing (to 500 pc) is necessary to reproduce the KS law, although with greater scatter.
123 - Zhi Li , Juntai Shen 2015
Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of $x_2$ orbits. All roundish nuclear rings in our simulations settle in the range of $x_2$ orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the $x_2$ orbital family, i.e. round nuclear rings are allowed only in the radial range of $x_2$ orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter $f_{rm ring}$ measured from the rotation curve. The gravitational torque on gas in high pattern speed models is larger, leading to a smaller ring size than in the low pattern speed models. Our result may have important implications for using nuclear rings to measure the parameters of real barred galaxies with 2D gas kinematics.
We conduct spectral line survey observations in the 3 mm band toward a spiral arm, a bar-end, and a nuclear region of the nearby barred spiral galaxy NGC 3627 with the IRAM 30 m telescope and the Nobeyama 45 m telescope. Additional observations are p erformed toward the spiral arm and the bar-end in the 2 mm band. We detect 8, 11, and 9 molecular species in the spiral arm, the bar-end, and the nuclear region, respectively. Star-formation activities are different among the three regions, and in particular, the nucleus of NGC 3627 is known as a LINER/Seyfert 2 type nucleus. In spite of these physical differences, the chemical composition shows impressive similarities among the three regions. This result means that the characteristic chemical composition associated with these regions is insensitive to the local physical conditions such as star formation rate, because such local effects are smeared out by extended quiescent molecular gas on scales of 1 kpc. Moreover, the observed chemical compositions are also found to be similar to those of molecular clouds in our Galaxy and the spiral arm of M51, whose elemental abundances are close to those in NGC 3627. Therefore, this study provides us with a standard template of the chemical composition of extended molecular clouds with the solar metalicity in nearby galaxies.
We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا