ترغب بنشر مسار تعليمي؟ اضغط هنا

Low excitation structure of $^{10}$B probed by scattering of electron and of 197 MeV polarized protons

229   0   0.0 ( 0 )
 نشر من قبل Ken Amos
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross-section and analyzing power data from 197 MeV $(p,p)$ scattering and longitudinal and transverse form factors for electron scattering to low lying states in $^{10}$B have been analyzed as tests of the structure of the nuclear states when they are described using a no-core $(0+2)hbaromega$ shell model. While the results obtained from the shell model clearly show the need of other elements, three-body forces in particular, to explain the observed spectrum, the reasonable level of agreement obtained in the analyses of the scattering data suggest that the wavefunctions from our shell model using only a two-body potential are credible. Any changes to the wavefunctions with the introduction of three-body forces in the shell model Hamiltonian should therefore be relatively minor.

قيم البحث

اقرأ أيضاً

Single-spin asymmetries for pions and charged kaons are measured in semi-inclusive deep-inelastic scattering of positrons and electrons off a transversely nuclear-polarized hydrogen target. The dependence of the cross section on the azimuthal angles of the target polarization (phi_S)and the produced hadron (phi) is found to have a substantial sin(phi+phi_S) modulation for the production of pi+, pi- and K+. This Fourier component can be interpreted in terms of non-zero transversity distribution functions and non-zero favored and disfavored Collins fragmentation functions with opposite sign. For pi0 and K- production the amplitude of this Fourier component is consistent with zero.
50 - J. Golak 2000
Inclusive 3He(e,e) and exclusive 3He(e,en) processes with polarized electrons and 3He have been theoretically analyzed and values for the magnetic and electric neutron form factors have been extracted. In both cases the form factor values agree well with the ones extracted from processes on the deuteron. Our results are based on Faddeev solutions, modern NN forces and partially on the incorporation of mesonic exchange currents.
85 - A. Corsi , Y. Kubota , J. Casal 2019
We present an investigation of the structure of 13Be obtained via a kinematically complete measurement of the (p; pn) reaction in inverse kinematics at 265 MeV/nucleon. The relative energy spectrum of 13Be is compared to Transfer-to-the-Continuum cal culations which use as structure inputs the overlaps of the 14Be ground-state wave function, computed in a three-body model, with the unbound states of the 13Be residual nucleus. The key role of neutron p-wave orbital in the interpretation of the low-relative-energy part of the spectrum is discussed.
The $^{10}$B+$^{120}$Sn reaction has been systematically studied at laboratory energies around the Coulomb barrier: E$_{rm LAB}=$31.5, 33.5, 35.0, and 37.5 MeV. Cross sections for the elastic scattering and some reaction processes have been measured: excitation to the $1^+$ state of $^{10}$B; excitation to the $2^+$ and $3^-$ states of $^{120}$Sn; and the one-neutron pick-up transfer $^{120}$Sn($^{10}$B,$^{11}$B)$^{119}$Sn. Coupled reaction channel (CRC) calculations have been performed in the context of the double-folding S~ao Paulo potential. The theoretical calculations result in a good overall description of the experimental angular distributions. The effect on the theoretical elastic-scattering angular distributions of couplings to the inelastic and transfer states (through the CRC calculations) and to the continuum states (through continuum-discretized coupled-channels calculations) has been investigated.
181 - W. Schadow 1998
The differential cross section for radiative capture of protons by deuterons is calculated using different realistic NN interactions. We compare our results with the available experimental data below $E_x = 20 MeV$. Excellent agreement is found when taking into account meson exchange currents, dipole and quadrupole contributions, and the full initial state interaction. There is only a small difference between the magnitudes of the cross sections for the different potentials considered. The angular distributions, however, are practically potential independent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا