ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Cold Dark Matter with the hierarchical buildup of stellar light

50   0   0.0 ( 0 )
 نشر من قبل Michael L. Balogh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michael L. Balogh




اسأل ChatGPT حول البحث

(Abridged) We demonstrate that the tenet of hierarchical structure growth leads directly to a robust, falsifiable prediction for the correlation between stellar fraction (fstar) and total system mass (M500) of galaxy groups and clusters. This prediction is relatively insensitive to the details of baryonic physics or cosmological parameters. In particular, if the fstar-M500 relation is fixed and does not evolve with redshift, CDM models predict the logarithmic slope of this relation to be b>-0.3. This constraint can be weakened if the fstar-M500 relation evolves strongly, but this implies more stars must be formed in situ in groups at low redshift. Conservatively requiring that at least half the stars in groups were formed by z=1, the constraint from evolution models is b>-0.35. Since the most massive clusters (M500=1E15 Msun) are observed to have fstar=0.01, this means that groups with M500=5E13 Msun must have fstar<0.03. Recent observations by Gonzalez et al. (2007) indicate a much steeper relation, with fstar>0.04 in groups, leading to b=-0.64. If confirmed, this would rule out hierarchical structure formation models: todays clusters could not have been built from todays groups, or even from the higher-redshift progenitors of those groups. We perform a careful analysis of these and other data to identify the most important systematic uncertainties in their measurements. Although correlated uncertainties on stellar and total masses might explain the steep observed relation, the data are only consistent with theory if the observed group masses are systematically underestimated.

قيم البحث

اقرأ أيضاً

The galaxy circular velocity function at small masses is related to the matter power spectrum on small scales. Although this function is well-studied for Local Group dwarfs, theoretical predictions and observational measurements are difficult for sat ellite galaxies, because of ram pressure and tidal stripping. By contrast, isolated dwarf galaxies are less affected by these processes, and almost always have enough 21cm emission to trace their dynamics robustly. Here, we test cold dark matter cosmology using isolated low mass dwarf galaxies from the SDSS with measured 21cm widths. We find consistency between the predicted and observed number density of isolated galaxies down to circular velocities of 50 km/s. Our technique yields a direct test of small-scale cosmology independent of the Lyman-alpha forest power spectrum, but our sample is currently statistically less powerful: warm dark matter particles heavier than 0.5 keV cannot be ruled out. Our major systematic uncertainty is the surface brightness limit of the SDSS. Blind HI surveys, such as the ALFALFA survey on Arecibo, will uncover a larger number of isolated low mass galaxies and increase the power of our constraints. With our sample, we also find that the Tully-Fisher relation for dwarf galaxies is a strong function of environment, and that the baryonic fraction is only a weak function of mass. These results suggest that for dwarf galaxies, gas loss is dominated by external, not internal, processes. [abridged]
In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coan nihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton and electron beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and down-scattering as well as decay of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BaBar data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently-proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.
We explore the cosmological constraints on the parameter w_dm of the dark matter barotropic equation of state (EoS) to investigate the warmness of the dark matter fluid. The model is composed by the dark matter and dark energy fluids in addition to t he radiation and baryon components. We constrain the values of w_dm using the latest cosmological observations that measure the expansion history of the Universe. When w_dm is estimated together with the parameter w_de of the barotropic EoS of dark energy we found that the cosmological data favor a value of w_dm = 0.006 +- 0.001, suggesting a -warm- dark matter, and w_de= -1.11 +- 0.03$ that corresponds to a phantom dark energy, instead of favoring a cold dark matter and a cosmological constant (w_dm = 0, w_de = -1). When w_dm is estimated alone but assuming w_de = -1, -1.1, -0.9, we found w_dm = 0.009 +- 0.002, 0.006 +- 0.002, 0.012 +- 0.002 respectively, where the errors are at 3 sigma (99.73%), i.e., w_dm > 0 with at least 99.73% of confidence level. When (w_dm, Omega_dm0) are constrained together, the best fit to data corresponds to (w_dm=0.005 +- 0.001, Omega_dm0 = 0.223 +- 0.008) and with the assumption of w_de = -1.1 instead of a cosmological constant (i.e., w_de = -1). With these results we found evidence of w_dm > 0 suggesting a -warm- dark matter, independent of the assumed value for w_{rm de}, but where values w_de < -1 are preferred by the observations instead of the cosmological constant. These constraints on w_dm are consistent with perturbative analyses done in previous works.
We report results from high-resolution particle-mesh (PM) N-body simulations of structure formation in an $Omega=1$ cosmological model with a mixture of Cold plus Hot Dark Matter (C+HDM) having $Omega_{rm cold}=0.6$, $Omega_ u=0.3$, and $Omega_{rm ba ryon}=0.1$. We present analytic fits to the C+HDM power spectra for both cold and hot ($ u$) components, which provide initial conditions for our nonlinear simulations. In order to sample the neutrino velocities adequately, these simulations included six times as many neutrino particles as cold particles. Our simulation boxes were 14, 50, and 200~Mpc cubes (with $H_0=50$ km s$^{-1}$ Mpc$^{-1}$); we also did comparison simulations for Cold Dark Matter (CDM) in a 50~Mpc box. C+HDM with linear bias factor $b=1.5$ is consistent both with the COBE data and with the galaxy correlations we calculate. We find the number of halos as a function of mass and redshift in our simulations; our results for both CDM and C+HDM are well fit by a Press-Schechter model. The number density of galaxy-mass halos is smaller than for CDM, especially at redshift $z>2$, but the numbers of cluster-mass halos are comparable. We also find that on galaxy scales the neutrino velocities and flatter power spectrum in C+HDM result in galaxy pairwise velocities that are in good agreement with the data, and about 30% smaller than in CDM with the same biasing factor. On scales of several tens of Mpc, the C+HDM streaming velocities are considerably larger than CDM. Thus C+HDM looks promising as a model of structure formation.
162 - Kris Sigurdson 2009
We show that hidden hot dark matter, hidden-sector dark matter with interactions that decouple when it is relativistic, is a viable dark matter candidate provided it has never been in thermal equilibrium with the particles of the standard model. This hidden hot dark matter may reheat to a lower temperature and number density than the visible Universe and thus account, simply with its thermal abundance, for all the dark matter in the Universe while evading the typical constraints on hot dark matter arising from structure formation. We find masses ranging from ~3 keV to ~10 TeV. While never in equilibrium with the standard model, this class of models may have unique observational signatures in the matter power spectrum or via extra-weak interactions with standard model particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا