ﻻ يوجد ملخص باللغة العربية
We explore the cosmological constraints on the parameter w_dm of the dark matter barotropic equation of state (EoS) to investigate the warmness of the dark matter fluid. The model is composed by the dark matter and dark energy fluids in addition to the radiation and baryon components. We constrain the values of w_dm using the latest cosmological observations that measure the expansion history of the Universe. When w_dm is estimated together with the parameter w_de of the barotropic EoS of dark energy we found that the cosmological data favor a value of w_dm = 0.006 +- 0.001, suggesting a -warm- dark matter, and w_de= -1.11 +- 0.03$ that corresponds to a phantom dark energy, instead of favoring a cold dark matter and a cosmological constant (w_dm = 0, w_de = -1). When w_dm is estimated alone but assuming w_de = -1, -1.1, -0.9, we found w_dm = 0.009 +- 0.002, 0.006 +- 0.002, 0.012 +- 0.002 respectively, where the errors are at 3 sigma (99.73%), i.e., w_dm > 0 with at least 99.73% of confidence level. When (w_dm, Omega_dm0) are constrained together, the best fit to data corresponds to (w_dm=0.005 +- 0.001, Omega_dm0 = 0.223 +- 0.008) and with the assumption of w_de = -1.1 instead of a cosmological constant (i.e., w_de = -1). With these results we found evidence of w_dm > 0 suggesting a -warm- dark matter, independent of the assumed value for w_{rm de}, but where values w_de < -1 are preferred by the observations instead of the cosmological constant. These constraints on w_dm are consistent with perturbative analyses done in previous works.
We explore the cosmological implications of five modified gravity (MG) models by using the recent cosmological observational data, including the recently released SNLS3 type Ia supernovae sample, the cosmic microwave background anisotropy data from t
The tensor-vector-scalar (TeVeS) model is considered a viable theory of gravity. It produces the Milgroms modified Newtonian dynamics in the nonrelativistic weak field limit and is free from ghosts. This model has been tested against various cosmolog
This paper aims to put constraints on the parameters of the Scalar Field Dark Matter (SFDM) model, when dark matter is described by a free real scalar field filling the whole Universe, plus a cosmological constant term. By using a compilation of 51 $
We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling $b$ by the form $b(a)=b_0a+b_e(1-a)$, where at the
We derive non-relativistic equations of motion for the formation of cosmological structure in a Scalar Field Dark Matter (SFDM) model corresponding to a complex scalar field endowed with a quadratic scalar potential. Starting with the full equations