ﻻ يوجد ملخص باللغة العربية
We show that disjointness requires randomized communication Omega(n^{1/(k+1)}/2^{2^k}) in the general k-party number-on-the-forehead model of complexity. The previous best lower bound for k >= 3 was log(n)/(k-1). Our results give a separation between nondeterministic and randomized multiparty number-on-the-forehead communication complexity for up to k=log log n - O(log log log n) many players. Also by a reduction of Beame, Pitassi, and Segerlind, these results imply subexponential lower bounds on the size of proofs needed to refute certain unsatisfiable CNFs in a broad class of proof systems, including tree-like Lovasz-Schrijver proofs.
Information-theoretic methods have proven to be a very powerful tool in communication complexity, in particular giving an elegant proof of the linear lower bound for the two-party disjointness function, and tight lower bounds on disjointness in the m
We consider the point-to-point message passing model of communication in which there are $k$ processors with individual private inputs, each $n$-bit long. Each processor is located at the node of an underlying undirected graph and has access to priva
We describe algorithmic Number On the Forehead protocols that provide dense Ruzsa-Szemer{e}di graphs. One protocol leads to a simple and natural extension of the original construction of Ruzsa and Szemer{e}di. The graphs induced by this protocol have
The computational complexity of a problem arising in the context of sparse optimization is considered, namely, the projection onto the set of $k$-cosparse vectors w.r.t. some given matrix $Omeg$. It is shown that this projection problem is (strongly)
We prove computational intractability of variants of checkers: (1) deciding whether there is a move that forces the other player to win in one move is NP-complete; (2) checkers where players must always be able to jump on their turn is PSPACE-complete; and (3) cooperati