ﻻ يوجد ملخص باللغة العربية
Let $K$ be a commutative compact hypergroup and $L^1(K)$ the hypergroup algebra. We show that $L^1(K)$ is amenable if and only if $pi_K$, the Plancherel weight on the dual space $widehat{K}$, is bounded. Furthermore, we show that if $K$ is an infinite discrete hypergroup and there exists $alphain widehat{K}$ which vanishes at infinity, then $L^1(K)$ is not amenable. In particular, $L^1(K)$ fails to be even $alpha$-left amenable if $pi_K({alpha})=0$.
Associated to a nonzero homomorphism $varphi$ of a Banach algebra $A$, we regard special functionals, say $m_varphi$, on certain subspaces of $A^ast$ which provide equivalent statements to the existence of a bounded right approximate identity in the
Rajchman measures of locally compact Abelian groups are studied for almost a century now, and they play an important role in the study of trigonometric series. Eymards influential work allowed generalizing these measures to the case of emph{non-Abeli
We give a necessary and sufficient condition for amenability of the Banach algebra of approximable operators on a Banach space. We further investigate the relationship between amenability of this algebra and factorization of operators, strengthening
The pseudo-amenability of Brandt Banach semigroup algebras is considered.
Let G be a locally compact group, and ZL1(G) be the centre of its group algebra. We show that when $G$ is compact ZL1(G) is not amenable when G is either nonabelian and connected, or is a product of infinitely many finite nonabelian groups. We also,