ﻻ يوجد ملخص باللغة العربية
We present measurements of the frequency and electric field dependent conductivity of single walled carbon nanotube(SWCNT) networks of various densities. The ac conductivity as a function of frequency is consistent with the extended pair approximation model and increases with frequency above an onset frequency $omega_0$ which varies over seven decades with a range of film thickness from sub-monolayer to 200 nm. The nonlinear electric field-dependent DC conductivity shows strong dependence on film thickness as well. Measurement of the electric field dependence of the resistance R(E) allows for the determination of a length scale $L_{E}$ possibly characterizing the distance between tube contacts, which is found to systematically decrease with increasing film thickness. The onset frequency $omega_0$ of ac conductivity and the length scale $L_{E}$ of SWCNT networks are found to be correlated, and a physically reasonable empirical formula relating them has been proposed. Such studies will help the understanding of transport properties and benefit the applications of this material system.
We study the photoabsorption properties of photoactive bulk polymer/ fullerene/nanotube heterojunctions in the near-infrared region. By combining pump-probe spectroscopy and linear response time-dependent density functional theory within the random p
The linear coefficient of the radial thermal expansion has been measured on a system of SWNT bundles in an interval of 2.2 - 120K. The measurement was performed using a dilatometer with a sensitivity of 2*10-9 cm. The cylindrical sample 7 mm high and
Carbon nanotubes (CTNs) with large aspect-ratios are extensively used to establish electrical connectedness in polymer melts at very low CNT loadings. However, the CNT size polydispersity and the quality of the dispersion are still not fully understo
Using the first-principles spin density functional approach, we have studied magnetism of a new type of all-carbon nanomaterials, i.e., the carbon nanowires inserted into the single-walled carbon nanotubes. It is found that if the 1D carbon nanowire
Single air-suspended carbon nanotubes (length 2 - 5 microns) exhibit high optical quantum efficiency (7 - 20%) for resonant pumping at low intensities. Under ultrafast excitation, the photoluminescence dramatically saturates for very low injected exc