ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge-functionalized and substitutional doped graphene nanoribbons: electronic and spin properties

283   0   0.0 ( 0 )
 نشر من قبل Felipe Cervantes-Sodi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene nanoribbons are the counterpart of carbon nanotubes in graphene-based nanoelectronics. We investigate the electronic properties of chemically modified ribbons by means of density functional theory. We observe that chemical modifications of zigzag ribbons can break the spin degeneracy. This promotes the onset of a semiconducting-metal transition, or of an half-semiconducting state, with the two spin channels having a different bandgap, or of a spin-polarized half-semiconducting state -where the spins in the valence and conduction bands are oppositely polarized. Edge functionalization of armchair ribbons gives electronic states a few eV away from the Fermi level, and does not significantly affect their bandgap. N and B produce different effects, depending on the position of the substitutional site. In particular, edge substitutions at low density do not significantly alter the bandgap, while bulk substitution promotes the onset of semiconducting-metal transitions. Pyridine-like defects induce a semiconducting-metal transition.



قيم البحث

اقرأ أيضاً

This study investigates the strong photoluminescence (PL) and X-ray excited optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes (GNFs:N), which arise from the significantly enhanced density of states in the region of {pi} states and the gap between {pi} and {pi}* states. The increase in the number of the sp2 clusters in the form of pyridine-like N-C, graphite-N-like, and the C=O bonding and the resonant energy transfer from the N and O atoms to the sp2 clusters were found to be responsible for the blue shift and the enhancement of the main PL emission feature. The enhanced PL is strongly related to the induced changes of the electronic structures and bonding properties, which were revealed by the X-ray absorption near-edge structure, X-ray emission spectroscopy, and resonance inelastic X-ray scattering. The study demonstrates that PL emission can be tailored through appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way for new optoelectronic devices.
We unveil the nature of the structural disorder in bottom-up zigzag graphene nanoribbons along with its effect on the magnetism and electronic transport on the basis of scanning probe microscopies and first-principles calculations. We find that edge- missing m-xylene units emerging during the cyclodehydrogenation step of the on-surface synthesis are the most common point defects. These bite defects act as spin-1 paramagnetic centers, severely disrupt the conductance spectrum around the band extrema, and give rise to spin-polarized charge transport. We further show that the electronic conductance across graphene nanoribbons is more sensitive to bite defects forming at the zigzag edges than at the armchair ones. Our work establishes a comprehensive understanding of the low-energy electronic properties of disordered bottom-up graphene nanoribbons.
117 - Hao Ren , Qunxiang Li , Haibin Su 2007
In this paper, we apply the first-principle theory to explore how the electronic structures of armchair graphene nanoribbons (AGNRs) are affected by chemical modifications. The edge addends include H, F, N, NH$_{2}$, and NO$_{2}$. Our theoretical res ults show that the energy gaps are highly tunable by controlling the widths of AGNRs and addends. The most interesting finding is that N-passivated AGNRs with various widths are metallic due to the unique electronic features of N-N bonds. This property change of AGNRs (from semiconducting to metallic) is important in developing graphene-based devices.
It is now possible to produce graphene nanoribbons (GNRs) with atomically defined widths. GNRs offer many opportunities for electronic devices and composites, if it is possible to establish the link between edge structure and functionalisation, and r esultant GNR properties. Switching hydrogen edge termination to larger more complex functional groups such as hydroxyls or thiols induces strain at the ribbon edge. However we show that this strain is then relieved via the formation of static out-of-plane ripples. The resultant ribbons have a significantly reduced Youngs Modulus which varies as a function of ribbon width, modified band gaps, as well as heterogeneous chemical reactivity along the edge. Rather than being the exception, such static edge ripples are likely on the majority of functionalized graphene ribbon edges.
The feature-rich electronic and magnetic properties of fluorine-doped graphene nanoribbons are investigated by the first-principles calculations. They arise from the cooperative or competitive relations among the significant chemical bonds, finite-si ze quantum confinement and edge structure. There exist C-C, C-F, and F-F bonds with the multi-orbital hybridizations. Fluorine adatoms can create the p-type metals or the concentration- and distribution-dependent semiconductors, depending on whether the $pi$ bonding is seriously suppressed by the top-site chemical bonding. Furthermore, five kinds of spin-dependent electronic and magnetic properties cover the non-magnetic and ferromagnetic metals, the non-magnetic semiconductors, and the anti-ferromagnetic semiconductors with/without the spin splitting. The diverse essential properties are clearly revealed in the spatial charge distribution, the spin density, and the orbital-projected density of states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا