ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluorination-Enriched Electronic and Magnetic Properties in Graphene Nanoribbons

81   0   0.0 ( 0 )
 نشر من قبل Ming-Fa Lin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The feature-rich electronic and magnetic properties of fluorine-doped graphene nanoribbons are investigated by the first-principles calculations. They arise from the cooperative or competitive relations among the significant chemical bonds, finite-size quantum confinement and edge structure. There exist C-C, C-F, and F-F bonds with the multi-orbital hybridizations. Fluorine adatoms can create the p-type metals or the concentration- and distribution-dependent semiconductors, depending on whether the $pi$ bonding is seriously suppressed by the top-site chemical bonding. Furthermore, five kinds of spin-dependent electronic and magnetic properties cover the non-magnetic and ferromagnetic metals, the non-magnetic semiconductors, and the anti-ferromagnetic semiconductors with/without the spin splitting. The diverse essential properties are clearly revealed in the spatial charge distribution, the spin density, and the orbital-projected density of states.



قيم البحث

اقرأ أيضاً

The electronic and optical response of Bernal stacked bilayer graphene with geometry modulation and gate voltage are studied. The broken symmetry in sublattices, one dimensional periodicity perpendicular to the domain wall and out-of-plane axis intro duces substantial changes of wavefunctions, such as gapless topological protected states, standing waves with bonding and anti-bonding characteristics, rich structures in density of states and optical spectra. The wavefunctions present well-behaved standing waves in pure system and complicated node structures in geometry-modulated system. The optical absorption spectra show forbidden optical excitation channels, prominent asymmetric absorption peaks, and dramatic variations in absorption structures. These results provide that the geometry-modulated structure with tunable gate voltage could be used for electronic and optical manipulation in future graphene-based devices.
Motivated by the recent synthesis of single layer TiSe2 , we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair- edged nanoribbons of this material. Our analysi s reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 nanoribbons have some distinctive properties. The electronic band gap of the nanoribbons decreases exponentially with the width and vanishes for ribbons wider than 20 Angstroms. For ultranarrow zigzag-edged nanoribbons we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have nonmagnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase nanoribbons of similar crystal structures.
Quantum-dot states in graphene nanoribbons (GNR) were calculated using density-functional theory, considering the effect of the electric field of gate electrodes. The field is parallel to the GNR plane and was generated by an inhomogeneous charge she et placed atop the ribbon. Varying the electric field allowed to observe the development of the GNR states and the formation of localized, quantum-dot-like states in the band gap. The calculation has been performed for armchair GNRs and for armchair ribbons with a zigzag section. For the armchair GNR a static dielectric constant of {epsilon} approx. 4 could be determined.
91 - L. Brey , H.A. Fertig 2006
We study the electronic states of narrow graphene ribbons (``nanoribbons) with zigzag and armchair edges. The finite width of these systems breaks the spectrum into an infinite set of bands, which we demonstrate can be quantitatively understood using the Dirac equation with appropriate boundary conditions. For the zigzag nanoribbon we demonstrate that the boundary condition allows a particle- and a hole-like band with evanescent wavefunctions confined to the surfaces, which continuously turn into the well-known zero energy surface states as the width gets large. For armchair edges, we show that the boundary condition leads to admixing of valley states, and the band structure is metallic when the width of the sample in lattice constant units is divisible by 3, and insulating otherwise. A comparison of the wavefunctions and energies from tight-binding calculations and solutions of the Dirac equations yields quantitative agreement for all but the narrowest ribbons.
A theoretical study of the transport properties of zigzag and armchair graphene nanoribbons with a magnetic barrier on top is presented. The magnetic barrier modifies the energy spectrum of the nanoribbons locally, which results in an energy shift of the conductance steps towards higher energies. The magnetic barrier also induces Fabry-Perot type oscillations, provided the edges of the barrier are sufficiently sharp. The lowest propagating state present in zigzag and metallic armchair nanoribbons prevent confinement of the charge carriers by the magnetic barrier. Disordered edges in nanoribbons tend to localize the lowest propagating state, which get delocalized in the magnetic barrier region. Thus, in sharp contrast to the case of two-dimensional graphene, the charge carriers in graphene nanoribbons cannot be confined by magnetic barriers. We also present a novel method based on the Greens function technique for the calculation of the magnetosubband structure, Bloch states and magnetoconductance of the graphene nanoribbons in a perpendicular magnetic field. Utilization of this method greatly facilitates the conductance calculations, because, in contrast to excising methods, the present method does not require self-consistent calculations for the surface Greens function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا