ﻻ يوجد ملخص باللغة العربية
We study non-topological solitons, so called Q-balls, which carry a non-vanishing Noether charge and arise as lump solutions of self-interacting complex scalar field models. Explicit examples of new axially symmetric non-spinning Q-ball solutions that have not been studied so far are constructed numerically. These solutions can be interpreted as angular excitations of the fundamental $Q$-balls and are related to the spherical harmonics. Correspondingly, they have higher energy and their energy densities possess two local maxima on the positive z-axis. We also study two Q-balls interacting via a potential term in (3+1) dimensions and construct examples of stationary, solitonic-like objects in (3+1)-dimensional flat space-time that consist of two interacting global scalar fields. We concentrate on configurations composed of one spinning and one non-spinning Q-ball and study the parameter-dependence of the energy and charges of the configuration. In addition, we present numerical evidence that for fixed values of the coupling constants two different types of 2-Q-ball solutions exist: solutions with defined parity, but also solutions which are asymmetric with respect to reflexion through the x-y-plane.
Non-topological solitons such as Q-balls and Q-shells have been studied for scalar fields invariant under global and gauged U(1) symmetries. We generalize this framework to include a Proca mass for the gauge boson, which can arise either from spontan
Scalar field theories with particular U(1)-symmetric potentials contain non-topological soliton solutions called Q-balls. Promoting the U(1) to a gauge symmetry leads to the more complicated situation of gauged Q-balls. The soliton solutions to the r
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a
We study angularly excited as well as interacting non-topological solitons, so-called Q-balls and their gravitating counterparts, so-called boson stars in 3+1 dimensions. Q-balls and boson stars carry a non-vanishing Noether charge and arise as solut
Radially excited $U(1)$ gauged $Q$-balls are studied using both analytical and numerical methods. Unlike the nongauged case, there exists only a finite number of radially excited gauged $Q$-balls at given values of the models parameters. Similarly to