ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Very-High Energy Gamma-Rays from the BL Lac Object PG 1553+113 with the MAGIC Telescope

296   0   0.0 ( 0 )
 نشر من قبل Robert Wagner
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Robert Wagner




اسأل ChatGPT حول البحث

The MAGIC telescope has observed very-high energy gamma-ray emission from the BL Lac object PG 1553+113 in 2005 and 2006 at an overall significance is 8.8 sigma. The light curve shows no significant flux variations on a daily timescale. The flux level during 2005 was, however, significantly higher as compared to 2006. The differential energy spectrum between approx. 90 GeV and 500 GeV is well described by a power law with a spectral index of -4.2+-0.3. The photon energy spectrum and spectral modeling allow to pose upper limits of z=0.74 and z=0.56, respectively, on the yet undetermined redshift of PG 1553+113. Recent VLT observations of this blazar show featureless spectra in the near-IR, thus no direct redshift could be determined from these measurements.



قيم البحث

اقرأ أيضاً

161 - E. Aliu , A. Archer , T. Aune 2014
We present results from VERITAS observations of the BL Lac object PG 1553+113 spanning the years 2010, 2011, and 2012. The time-averaged spectrum, measured between 160 and 560,GeV, is well described by a power law with a spectral index of $4.33 pm 0. 09$. The time-averaged integral flux above $200,$GeV measured for this period was $(1.69 pm 0.06) times 10^{-11} , mathrm{ph} , mathrm{cm}^{-2} , mathrm{s}^{-1}$, corresponding to 6.9% of the Crab Nebula flux. We also present the combined $gamma$-ray spectrum from the Fermi Large Area Telescope and VERITAS covering an energy range from 100~MeV to 560~GeV. The data are well fit by a power law with an exponential cutoff at $rm {101.9 pm 3.2 , mathrm{GeV}} $. The origin of the cutoff could be intrinsic to PG~1553+113 or be due to the $gamma$-ray opacity of our universe through pair production off the extragalactic background light (EBL). Given lower limits to the redshift of $rm z egthinspace > egthinspace 0.395$ based on optical/UV observations of PG~1553+113, the cutoff would be dominated by EBL absorption. Conversely, the small statistical uncertainties of the VERITAS energy spectrum have allowed us to provide a robust upper limit on the redshift of PG 1553+113 of $z egthinspace leq egthinspace 0.62$. A strongly-elevated mean flux of $(2.50 pm 0.14) times 10^{-11} , mathrm{ph} , mathrm{cm}^{-2} , mathrm{s}^{-1}$ (10.3% of the Crab Nebula flux) was observed during 2012, with the daily flux reaching as high as $(4.44 pm 0.71) times 10^{-11} , mathrm{ph} , mathrm{cm}^{-2} , mathrm{s}^{-1}$ (18.3% of the Crab Nebula flux) on MJD 56048. The light curve measured during the 2012 observing season is marginally inconsistent with a steady flux, giving a $chi^2$ probability for a steady flux of 0.03%.
PG 1553+113 is a very-high-energy (VHE, $E>100,mathrm{GeV}$) $gamma$-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range $0.4<z<0.58$. The MAGIC telescopes have monitored the sources a ctivity since 2005. In early 2012, PG 1553+113 was found in a high-state, and later, in April of the same year, the source reached its highest VHE flux state detected so far. Simultaneous observations carried out in X-rays during 2012 April show similar flaring behaviour. In contrast, the $gamma$-ray flux at $E<100,mathrm{GeV}$ observed by Fermi-LAT is compatible with steady emission. In this paper, a detailed study of the flaring state is presented. The VHE spectrum shows clear curvature, being well fitted either by a power law with an exponential cut-off or by a log-parabola. A simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE $gamma$-ray spectrum is rejected with a high significance (fit probability P=2.6 $times 10^{-6}$). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by current generation EBL models assuming a redshift $zsim0.4$. New constraints on the redshift are derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, $z=0.4$, based on the detection of Ly$alpha$ absorption. Finally, we find that the synchrotron self-Compton (SSC) model gives a satisfactory description of the observed multi-wavelength spectral energy distribution during the flare.
147 - Matthew Orr 2011
VERITAS, an array of imaging atmospheric-Cherenkov telescopes, studies blazars in the energy range between ~100 GeV and ~30 TeV. With its excellent sensitivity at these energies, and ever-deepening source exposures, VERITAS is in a position to probe distant blazars for clear absorption signatures in their very-high-energy gamma-ray spectra due to interactions with the extragalactic background light (EBL). We discuss results from recent VERITAS observations of PG 1553+113 (z > 0.4) which have resulted in the most significant very-high-energy detection ever obtained for this source. The most recent VERITAS spectral measurements are used to place an upper limit on the source redshift of z < 0.5 at the 95% confidence level. Also discussed are the prospects of using these observations, along with those of other hard- spectrum blazars, to place constraints on the EBL.
We present the results of five years (2005-2009) of MAGIC observations of the BL Lac object PG 1553+113 at very high energies (VHEs, E > 100 GeV). Power law fits of the individual years are compatible with a steady mean photon index Gamma = 4.27 $pm$ 0.14. In the last three years of data, the flux level above 150 GeV shows a clear variability (probability of constant flux < 0.001%). The flux variations are modest, lying in the range from 4% to 11% of the Crab Nebula flux. Simultaneous optical data also show only modest variability that seems to be correlated with VHE gamma ray variability. We also performed a temporal analysis of (all available) simultaneous Fermi/LAT data of PG 1553+113 above 1 GeV, which reveals hints of variability in the 2008-2009 sample. Finally, we present a combination of the mean spectrum measured at very high energies with archival data available for other wavelengths. The mean spectral energy distribution can be modeled with a one-zone Synchrotron Self Compton (SSC) model, which gives the main physical parameters governing the VHE emission in the blazar jet.
A multifrequency campaign on the BL Lac object PG 1553+113 was organized by the Whole Earth Blazar Telescope (WEBT) in 2013 April-August, involving 19 optical, two near-IR, and three radio telescopes. The aim was to study the source behaviour at low energies during and around the high-energy observations by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes in April-July. We also analyse the UV and X-ray data acquired by the Swift and XMM-Newton satellites in the same period. The WEBT and satellite observations allow us to detail the synchrotron emission bump in the source spectral energy distribution (SED). In the optical we found a general bluer-when-brighter trend. The X-ray spectrum remained stable during 2013, but a comparison with previous observations suggests that it becomes harder when the X-ray flux increases. The long XMM-Newton exposure reveals a curved X-ray spectrum. In the SED, the XMM-Newton data show a hard near-UV spectrum, while Swift data display a softer shape that is confirmed by previous HST-COS and IUE observations. Polynomial fits to the optical-X-ray SED show that the synchrotron peak likely lies in the 4-30 eV energy range, with a general shift towards higher frequencies for increasing X-ray brightness. However, the UV and X-ray spectra do not connect smoothly. Possible interpretations include: i) orientation effects, ii) additional absorption, iii) multiple emission components, and iv) a peculiar energy distribution of relativistic electrons. We discuss the first possibility in terms of an inhomogeneous helical jet model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا