ﻻ يوجد ملخص باللغة العربية
An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fuer Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.
An overview is presented of laser spectroscopy experiments with cold, trapped, highly-charged ions, which will be performed at the HITRAP facility at GSI in Darmstadt (Germany). These high-resolution measurements of ground state hyperfine splittings
The current status of bound state quantum electrodynamics calculations of transition energies for few-electron ions is reviewed. Evaluation of one and two body QED correction is presented, as well as methods to evaluate many-body effects that cannot
Precision spectroscopy of atomic systems is an invaluable tool for the advancement of our understanding of fundamental interactions and symmetries. Recently, highly charged ions (HCI) have been proposed for sensitive tests of physics beyond the Stand
The present status of tests of QED with highly charged ions is reviewed. The theoretical predictions for the Lamb shift and the transition energies are compared with available experimental data. Recent achievements in studies of the hyperfine splitti
We have built a vacuum double crystal spectrometer, which coupled to an electron-cyclotron resonance ion source, allows to measure low-energy x-ray transitions in highly-charged ions with accuracies of the order of a few parts per million. We describ