ﻻ يوجد ملخص باللغة العربية
We report on the residence times of capillary waves above a given height $h$ and on the typical waiting time in between such fluctuations. The measurements were made on phase separated colloid-polymer systems by laser scanning confocal microscopy. Due to the Brownian character of the process, the stochastics vary with the chosen measurement interval $Delta t$. In experiments, the discrete scanning times are a practical cutoff and we are able to measure the waiting time as a function of this cutoff. The measurement interval dependence of the observed waiting and residence times turns out to be solely determined by the time dependent height-height correlation function $g(t)$. We find excellent agreement with the theory presented here along with the experiments.
We consider the motion of an active Brownian particle with speed fluctuations in d-dimensions in the presence of both translational and orientational diffusion. We use an Ornstein-Uhlenbeck process for active speed generation. Using a Laplace transfo
We determine the nonlocal stress autocorrelation tensor in an homogeneous and isotropic system of interacting Brownian particles starting from the Smoluchowski equation of the configurational probability density. In order to relate stresses to partic
The ``Brownian bees model describes an ensemble of $N$ independent branching Brownian particles. When a particle branches into two particles, the particle farthest from the origin is eliminated so as to keep a constant number of particles. In the lim
In the context of stochastic thermodynamics, a minimal model for non equilibrium steady states has been recently proposed: the Brownian Gyrator (BG). It describes the stochastic overdamped motion of a particle in a two dimensional harmonic potential,
Active Brownian particles (ABPs) and Run-and-Tumble particles (RTPs) both self-propel at fixed speed $v$ along a body-axis ${bf u}$ that reorients either through slow angular diffusion (ABPs) or sudden complete randomisation (RTPs). We compare the ph