ﻻ يوجد ملخص باللغة العربية
The ``Brownian bees model describes an ensemble of $N$ independent branching Brownian particles. When a particle branches into two particles, the particle farthest from the origin is eliminated so as to keep a constant number of particles. In the limit of $Nto infty$, the spatial density of the particles is governed by the solution of a free boundary problem for a reaction-diffusion equation. At long times the particle density approaches a spherically symmetric steady state solution with a compact support. Here we study fluctuations of the ``swarm of bees due to the random character of the branching Brownian motion in the limit of large but finite $N$. We consider a one-dimensional setting and focus on two fluctuating quantities: the swarm center of mass $X(t)$ and the swarm radius $ell(t)$. Linearizing a pertinent Langevin equation around the deterministic steady state solution, we calculate the two-time covariances of $X(t)$ and $ell(t)$. The variance of $X(t)$ directly follows from the covariance of $X(t)$, and it scales as $1/N$ as to be expected from the law of large numbers. The variance of $ell(t)$ behaves differently: it exhibits an anomalous scaling $ln N/N$. This anomaly appears because all spatial scales, including a narrow region near the edges of the swarm where only a few particles are present, give a significant contribution to the variance. We argue that the variance of $ell(t)$ can be obtained from the covariance of $ell(t)$ by introducing a cutoff at the microscopic time $1/N$ where the continuum Langevin description breaks down. Our theoretical predictions are in good agreement with Monte-Carlo simulations of the microscopic model. Generalizations to higher dimensions are briefly discussed.
The Brownian bees model describes a system of $N$ independent branching Brownian particles. At each branching event the particle farthest from the origin is removed, so that the number of particles remains constant at all times. Berestycki et al. (20
Time-dependent processes are often analysed using the power spectral density (PSD), calculated by taking an appropriate Fourier transform of individual trajectories and finding the associated ensemble-average. Frequently, the available experimental d
We study the correlations between the maxima $m$ and $M$ of a Brownian motion (BM) on the time intervals $[0,t_1]$ and $[0,t_2]$, with $t_2>t_1$. We determine exact forms of the distribution functions $P(m,M)$ and $P(G = M - m)$, and calculate the mo
We analyze the joint distributions and temporal correlations between the partial maximum $m$ and the global maximum $M$ achieved by a Brownian Bridge on the subinterval $[0,t_1]$ and on the entire interval $[0,t]$, respectively. We determine three pr
We report on the residence times of capillary waves above a given height $h$ and on the typical waiting time in between such fluctuations. The measurements were made on phase separated colloid-polymer systems by laser scanning confocal microscopy. Du