ﻻ يوجد ملخص باللغة العربية
Polygons are described as almost-convex if their perimeter differs from the perimeter of their minimum bounding rectangle by twice their `concavity index, $m$. Such polygons are called emph{$m$-convex} polygons and are characterised by having up to $m$ indentations in the side. We use a `divide and conquer approach, factorising 2-convex polygons by extending a line along the base of its indents. We then use the inclusion-exclusion principle, the Hadamard product and extensions to known methods to derive the generating functions for each case.
Polygons are described as almost-convex if their perimeter differs from the perimeter of their minimum bounding rectangle by twice their `concavity index, $m$. Such polygons are called emph{$m$-convex} polygons and are characterised by having up to $
A binary poset code of codimension M (of cardinality 2^{N-M}, where N is the code length) can correct maximum M errors. All possible poset metrics that allow codes of codimension M to be M-, (M-1)- or (M-2)-perfect are described. Some general conditi
Let $S$ be a set of $n$ points in general position in the plane, and let $X_{k,ell}(S)$ be the number of convex $k$-gons with vertices in $S$ that have exactly $ell$ points of $S$ in their interior. We prove several equalities for the numbers $X_{k,e
We characterize the topological configurations of points and lines that may arise when placing n points on a circle and drawing the n perpendicular bisectors of the sides of the corresponding convex cyclic n-gon. We also provide exact and asymptotic
Given a graph whose edges are labeled by ideals in a ring, a generalized spline is a labeling of each vertex by a ring element so that adjacent vertices differ by an element of the ideal associated to the edge. We study splines over the ring Z/mZ. Pr