ﻻ يوجد ملخص باللغة العربية
We present arcsecond-scale mid-ir photometry (in the 10.5 micron N band and at 24.8 microns), and low resolution spectra in the N band (R~100) of a candidate high mass protostellar object (HMPO) in IRAS 18151-1208 and of two HMPO candidates in IRAS 20343+4129, IRS 1 and IRS 3. In addition we present high resolution mid-ir spectra (R~80000) of the two HMPO candidates in IRAS 20343+4129. These data are fitted with simple models to estimate the masses of gas and dust associated with the mid-ir emitting clumps, the column densities of overlying absorbing dust and gas, the luminosities of the HMPO candidates, and the likely spectral type of the HMPO candidate for which [Ne II] 12.8 micron emission was detected (IRAS 20343+4129 IRS 3). We suggest that IRAS 18151-1208 is a pre-ultracompact HII region HMPO, IRAS 20343+4129 IRS 1 is an embedded young stellar object with the luminosity of a B3 star, and IRAS 20343+4129 IRS 3 is a B2 ZAMS star that has formed an ultracompact HII region and disrupted its natal envelope.
The study of physical and chemical properties of massive protostars is critical to better understand the evolutionary sequence which leads to the formation of high-mass stars. IRAS 18151-1208 is a nearby massive region (d = 3kpc, L ~ 20000 Lsun) whic
We present the results of CS J=2-1 mapping observations towards 39 massive star-forming regions selected from the previous CO line survey of cold IRAS sources with high-velocity CO flows along the Galactic plane (Yang et al. 2002). All sources are de
A set of six debris disk candidates identified with IRAS or WISE excesses were observed at either 350 um or 450 um with the CSO. Five of the targets - HIP 51658, HIP 68160, HIP 73512, HIP 76375, and HIP 112460 - have among the largest measured excess
We present high-sensitivity, high-resolution images of the Ultraluminous Infrared Galaxies (ULIRG; L$_{mathrm{FIR}} > 10^{12}$ L$_odot$) IRAS 23365+3604 and IRAS 07251-0248, taken with the EVN at 6 and 18 cm. The images show a large number of compact
A multiwavelength study of the star forming regions associated with IRAS 19111+1048 and IRAS 19110+1045 has been carried out. These have been simultaneously mapped in two far infrared bands at lambda_eff ~ 130 and 200 micron with ~1 angular resolutio