ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of massive protostars: the IRAS 18151-1208 region

42   0   0.0 ( 0 )
 نشر من قبل Matthieu Marseille
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of physical and chemical properties of massive protostars is critical to better understand the evolutionary sequence which leads to the formation of high-mass stars. IRAS 18151-1208 is a nearby massive region (d = 3kpc, L ~ 20000 Lsun) which splits into three cores: MM1, MM2 and MM3 (separated by 1-2). We aim at (1) studying the physical and chemical properties of the individual MM1, MM2 and MM3 cores; (2) deriving their evolutionary stages; (3) using these results to improve our view of the evolutionary sequence of massive cores. The region was observed in the CS, C34S, H2CO, HCO+, H13CO+, and N2H+ lines at mm wavelengths with the IRAM 30m and Mopra telescopes. We use 1D and 2D modeling of the dust continuum to derive the density and temperature distributions, which are then used in the RATRAN code to model the lines and constrain the abundances of the observed species. All the lines were detected in MM1 and MM2. MM3 shows weaker emission, or even is undetected in HCO+ and all isotopic species. MM2 is driving a newly discovered CO outflow and hosts a mid-IR-quiet massive protostar. The abundance of CS is significantly larger in MM1 than in MM2, but smaller than in a reference massive protostar such as AFGL2591. In contrast the N2H+ abundance decreases from MM2 to MM1, and is larger than in AFGL2591. Both MM1 and MM2 host an early phase massive protostar, but MM2 (and mid-IR-quiet sources in general) is younger and more dominated by the host protostar than MM1 (mid-IR-bright). The MM3 core is probably in a pre-stellar phase. We find that the N2H+/C34S ratio varies systematically with age in the massive protostars for which the data are available. It can be used to identify young massive protostars.

قيم البحث

اقرأ أيضاً

We present arcsecond-scale mid-ir photometry (in the 10.5 micron N band and at 24.8 microns), and low resolution spectra in the N band (R~100) of a candidate high mass protostellar object (HMPO) in IRAS 18151-1208 and of two HMPO candidates in IRAS 2 0343+4129, IRS 1 and IRS 3. In addition we present high resolution mid-ir spectra (R~80000) of the two HMPO candidates in IRAS 20343+4129. These data are fitted with simple models to estimate the masses of gas and dust associated with the mid-ir emitting clumps, the column densities of overlying absorbing dust and gas, the luminosities of the HMPO candidates, and the likely spectral type of the HMPO candidate for which [Ne II] 12.8 micron emission was detected (IRAS 20343+4129 IRS 3). We suggest that IRAS 18151-1208 is a pre-ultracompact HII region HMPO, IRAS 20343+4129 IRS 1 is an embedded young stellar object with the luminosity of a B3 star, and IRAS 20343+4129 IRS 3 is a B2 ZAMS star that has formed an ultracompact HII region and disrupted its natal envelope.
Protostellar jets are present in the later stages of the stellar formation. Non-thermal radio emission has been detected from the jets and hot spots of some massive protostars, indicating the presence of relativistic electrons there. We are intereste d in exploring if these non-thermal particles can emit also at gamma-rays. In the present contribution we model the non-thermal emission produced in the jets associated with the massive protostar IRAS 18162-2048. We obtain that the gamma-ray emission produced in this source is detectable by the current facilities in the GeV domain.
122 - P. Benaglia , M. Ribo , J.A. Combi 2010
Context. With the latest infrared surveys, the number of massive protostellar candidates has increased significantly. New studies have posed additional questions on important issues about the formation, evolution, and other phenomena related to them. Complementary to infrared data, radio observations are a good tool to study the nature of these objects, and to diagnose the formation stage. Aims. Here we study the far-infrared source IRAS 16353-4636 with the aim of understanding its nature and origin. In particular, we search for young stellar objects (YSOs), possible outflow structure, and the presence of non-thermal emission. Methods. Using high-resolution, multi-wavelength radio continuum data obtained with the Australia Telescope Compact Array, we image IRAS 16353-4636 and its environment from 1.4 to 19.6 GHz, and derive the distribution of the spectral index at maximum angular resolution. We also present new JHKs photometry and spectroscopy data obtained at ESO NTT. 13 CO and archival HI line data, and infrared databases (MSX, GLIMPSE, MIPSGal) are also inspected. Results. The radio continuum emission associated with IRAS 16353-4636 was found to be extended (~10 arcsec), with a bow-shaped morphology above 4.8 GHz, and a strong peak persistent at all frequencies. The NIR photometry led us to identify ten near-IR sources and classify them according to their color. We used the HI line data to derive the source distance, and analyzed the kinematical information from the CO and NIR lines detected. Conclusions. We have identified the source IRAS 16353-4636 as a new protostellar cluster. In this cluster we recognized three distinct sources: a low-mass YSO, a high-mass YSOs, and a mildly confined region of intense and non-thermal radio emission. We propose the latter corresponds to the terminal part of an outflow.
IRAS19410+2336 is a young massive star forming region with an intense outflow activity. We present here spatially resolved NIR spectroscopy which allows us to verify whether the H2 emission detected in this object originates from thermal emission in shock fronts or from fluorescence excitation by non-ionizing UV photons. Moreover, NIR spectroscopy also offers the possibility of studying the characteristics of the putative driving source(s) of the H2 emission by the detection of photospheric and circumstellar spectral features, and of the environmental conditions (e.g. extinction). We obtained long-slit, intermediate-resolution, NIR spectra of IRAS19410+2336 using LIRIS. As a complement, we also obtained J, H and K_s images with the Las Campanas 2.5m Du Pont Telescope, and archival mid-infrared (MIR) Spitzer images at 3.6, 4.5, 5.8 and 8.0 um. We confirm the shocked nature of the H2 emission, with an excitation temperature of about 2000 K. We have also identified objects with very different properties and evolutionary stages in IRAS19410+2336. The most massive source at millimeter wavelengths, mm1, with a mass of a few tens of solar masses, has a bright NIR (and MIR) counterpart. This suggests that emission is leaking at these wavelengths. The second most massive millimeter source, mm2, is only detected at lambda > 6 um, suggesting that it could be a high-mass protostar still in its main accretion phase. The NIR spectra of some neighboring sources show CO first-overtone bandhead emission which is associated with neutral material located in the inner regions of the circumstellar environment of YSOs.
We present results of Chandra ACIS-I and Karl G. Jansky Very Large Array (VLA) 6 cm continuum observations of the IRAS 20126+4104 massive star forming region. We detect 150 X-ray sources within the 17 arcmin x 17 arcmin ACIS-I field, and a total of 1 3 radio sources within the 9.2 primary beam at 4.9 GHz. Among these are the first 6 cm detections of the central sources reported by Hofner et al. (2007), namely I20N1, I20S, and I20var. A new variable radio sources is also reported. Searching the 2MASS archive we identified 88 NIR counterparts to the X-ray sources. Only 4 of the X-ray sources had 6 cm counterparts. Based on an NIR color-color analysis, and on the Besancon simulation of Galactic stellar populations (Robin et al. 2003), we estimate that about 90 X-ray sources are associated with this massive star forming region. We detect an increasing surface density of X-ray sources toward the massive protostar and infer the presence of a cluster of at least 46 YSOs within a distance of 1.2 pc from the massive protostar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا