ﻻ يوجد ملخص باللغة العربية
We formulate some simple conditions under which a Markov chain may be approximated by the solution to a differential equation, with quantifiable error probabilities. The role of a choice of coordinate functions for the Markov chain is emphasised. The general theory is illustrated in three examples: the classical stochastic epidemic, a population process model with fast and slow variables, and core-finding algorithms for large random hypergraphs.
We consider backward stochastic differential equations (BSDEs) related to finite state, continuous time Markov chains. We show that appropriate solutions exist for arbitrary terminal conditions, and are unique up to sets of measure zero. We do not re
Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There is, however, a very peculiar kind of discrete
We review recent results on the metastable behavior of continuous-time Markov chains derived through the characterization of Markov chains as unique solutions of martingale problems.
We introduce the space of virtual Markov chains (VMCs) as a projective limit of the spaces of all finite state space Markov chains (MCs), in the same way that the space of virtual permutations is the projective limit of the spaces of all permutations
Computing the stationary distributions of a continuous-time Markov chain (CTMC) involves solving a set of linear equations. In most cases of interest, the number of equations is infinite or too large, and the equations cannot be solved analytically o