ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of an M9.5 Candidate Brown Dwarf in the TW Hydrae Association - DENIS J124514.1-442907

390   0   0.0 ( 0 )
 نشر من قبل Dagny Looper
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dagny L. Looper




اسأل ChatGPT حول البحث

We report the discovery of a fifth candidate substellar system in the ~5-10 Myr TW Hydrae Association - DENIS J124514.1-442907. This object has a NIR spectrum remarkably similar to that of 2MASS J1139511-315921, a known TW Hydrae brown dwarf, with low surface gravity features such as a triangular-shaped H-band, deep H2O absorption, weak alkali lines, and weak hydride bands. We find an optical spectral type of M9.5 and estimate a mass of <24 M_Jup, assuming an age of ~5-10 Myr. While the measured proper motion for DENIS J124514.1-442907 is inconclusive as a test for membership, its position in the sky is coincident with the TW Hydrae Association. A more accurate proper motion measurement, higher resolution spectroscopy for radial velocity, and a parallax measurement are needed to derive the true space motion and to confirm its membership.



قيم البحث

اقرأ أيضاً

124 - R. A. Webb 1998
We report the discovery of five T Tauri star systems, two of which are resolved binaries, in the vicinity of the nearest known region of recent star formation, the TW Hydrae Association. The newly discovered systems display the same signatures of you th (namely high X-ray flux, large Li abundance and strong chromospheric activity) and the same proper motion as the original five members. These similarities firmly establish the group as a bona fide T Tauri association, unique in its proximity to Earth and its complete isolation from any known molecular clouds. At an age of ~10 Myr and a distance of ~50 pc, the association members are excellent candidates for future studies of circumstellar disk dissipation and the formation of brown dwarfs and planets. Indeed, as an example, our speckle imaging revealed a faint, very likely companion 2 north of CoD-33 7795 (TWA 5). Its color and brightness suggest a spectral type ~M8.5 which, at an age of ~10^7 years, implies a mass ~20 M(Jupiter).
146 - E. Akiyama , T. Muto , N. Kusakabe 2015
We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0.2 to 1.5 (11 - 81 AU) and the PI image shows a clear axi symmetric depression in polarized intensity at ~ 0.4 (~ 20 AU) from the central star, similar to the ~ 80 AU gap previously reported from HST images. Azimuthal polarized intensity profile also shows the disk beyond 0.2 is almost axisymmetric. We discuss two possible scenarios explaining the origin of the polarized intensity depression: 1) a gap structure may exist at ~ 20 AU from the central star because of shallow slope seen in the polarized intensity profile, and 2) grain growth may be occurring in the inner region of the disk. Multi-band observations at NIR and millimeter/sub-millimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely.
92 - F. J. Low 2005
Spitzer Space Telescope infrared measurements are presented for 24 members of the TW Hydrae association (TWA). High signal-to-noise 24-micron (um) photometry is presented for all of these stars, including 20 stars that were not detected by IRAS. Amon g these 20 stars, only a single object, TWA 7, shows excess emission at 24um and at the level of only 40% above the stars photosphere. TWA 7 also exhibits a strong 70um excess that is a factor of 40 brighter than the stellar photosphere at this wavelength. At 70um, an excess of similar magnitude is detected for TWA 13, though no 24um excess was detected for this binary. For the 18 stars that failed to show measurable IR excesses, the sensitivity of the current 70um observations does not rule out substantial cool excesses at levels 10-40x above their stellar continua. Measurements of two T Tauri stars, TW Hya and Hen 6-300, confirm that their spectacular IR spectral energy distributions (SEDs) do not turn over even by 160um, consistent with the expectation for their active accretion disks. In contrast, the Spitzer data for the luminous planetary debris systems in the TWA, HD 98800B and HR 4796A, are consistent with single-temperature blackbody SEDs. The major new result of this study is the dramatic bimodal distribution found for the association in the form of excess emission at a wavelength of 24um, indicating negligible amounts of warm (>100 K) dust and debris around 20 of 24 stars in this group of very young stars. This bimodal distribution is especially striking given that the four stars in the association with strong IR excesses are >100x brighter at 24um than their photospheres.
We present low-resolution (R=900) optical (576.1--1,051.1 nm) spectroscopic observations of 40 candidate very low-mass members in the Upper Scorpius OB association. These objects were selected using the $I$, $J$ and $K$ photometry available in the DE NIS database. We have derived spectral types and we have measured H$alpha$ and NaI doublet (at 818.3 and 819.5 nm) equivalent widths. We assess the youth of the objects by comparing them to their older counterparts of similar spectral type in the Pleiades cluster and the field. Our analysis indicates that 28 of our targets are young very low-mass objects, and thus they are strong candidate members of the OB association. The other 12 DENIS sources are foreground M dwarfs or background red giants. Our sample of spectroscopic candidate members includes 18 objects with spectral types in the range M6.5 and M9, which are likely young brown dwarfs. We classify these candidates as accreting/non accreting using the scheme proposed by Barrado y Navascues & Marti n (2003). We find 5 substellar-mass candidate cluster members that are still undergoing mass accretion, indicating that the timescale for accretion onto brown dwarfs can be as long as 5 Myr in some cases.
Adaptive optics (AO) on 8-10 m telescopes is an enormously powerful tool for studying young nearby stars. It is especially useful for searching for companions. Using AO on the 10-m W.M. Keck II telescope we have measured the position of the brown dwa rf companion to TWA5 and resolved the primary into an 0.055 arcsecond double. Over the next several years follow-up astrometry should permit an accurate determination of the masses of these young stars. We have also re-observed the candidate extrasolar planet TWA6B, but measurements of its motion relative to TWA6A are inconclusive. We are carrying out a search for new planetary or brown dwarf companions to TWA stars and, if current giant planet models are correct, are currently capable of detecting a 1 Jupiter-mass companion at ~1 arcsecond and a 5 Jupiter-mass companion at ~0.5 arcsecon around a typical TWA member.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا