ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of seven T Tauri stars and a brown dwarf candidate in the nearby TW Hydrae Association

125   0   0.0 ( 0 )
 نشر من قبل Richard
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. A. Webb




اسأل ChatGPT حول البحث

We report the discovery of five T Tauri star systems, two of which are resolved binaries, in the vicinity of the nearest known region of recent star formation, the TW Hydrae Association. The newly discovered systems display the same signatures of youth (namely high X-ray flux, large Li abundance and strong chromospheric activity) and the same proper motion as the original five members. These similarities firmly establish the group as a bona fide T Tauri association, unique in its proximity to Earth and its complete isolation from any known molecular clouds. At an age of ~10 Myr and a distance of ~50 pc, the association members are excellent candidates for future studies of circumstellar disk dissipation and the formation of brown dwarfs and planets. Indeed, as an example, our speckle imaging revealed a faint, very likely companion 2 north of CoD-33 7795 (TWA 5). Its color and brightness suggest a spectral type ~M8.5 which, at an age of ~10^7 years, implies a mass ~20 M(Jupiter).



قيم البحث

اقرأ أيضاً

390 - Dagny L. Looper 2007
We report the discovery of a fifth candidate substellar system in the ~5-10 Myr TW Hydrae Association - DENIS J124514.1-442907. This object has a NIR spectrum remarkably similar to that of 2MASS J1139511-315921, a known TW Hydrae brown dwarf, with lo w surface gravity features such as a triangular-shaped H-band, deep H2O absorption, weak alkali lines, and weak hydride bands. We find an optical spectral type of M9.5 and estimate a mass of <24 M_Jup, assuming an age of ~5-10 Myr. While the measured proper motion for DENIS J124514.1-442907 is inconclusive as a test for membership, its position in the sky is coincident with the TW Hydrae Association. A more accurate proper motion measurement, higher resolution spectroscopy for radial velocity, and a parallax measurement are needed to derive the true space motion and to confirm its membership.
We present high resolution (R ~ 60,000) circular spectropolarimetry of the classical T Tauri star TW Hydrae. We analyze 12 photospheric absorption lines and measure the net longitudinal magnetic field for 6 consecutive nights. While no net polarizati on is detected the first five nights, a significant photospheric field of Bz = 149 pm 33 G is found on the sixth night. To rule out spurious instrumental polarization, we apply the same analysis technique to several non-magnetic telluric lines, detecting no significant polarization. We further demonstrate the reality of this field detection by showing that the splitting between right and left polarized components in these 12 photospheric lines shows a linear trend with Lande g-factor times wavelength squared, as predicted by the Zeeman effect. However, this longitudinal field detection is still much lower than that which would result if a pure dipole magnetic geometry is responsible for the mean magnetic field strength of 2.6 kG previously reported for TW Hya. We also detect strong circular polarization in the He I 5876 and the Ca II 8498 emission lines, indicating a strong field in the line formation region of these features. The polarization of the Ca II line is substantially weaker than that of the He I line, which we interpret as due to a larger contribution to the Ca II line from chromospheric emission in which the polarization signals cancel. However, the presence of polarization in the Ca II line indicates that accretion shocks on Classical T Tauri stars do produce narrow emission features in the infrared triplet lines of Calcium.
We present high spectral resolution ($Rapprox108,000$) Stokes $V$ polarimetry of the Classical T Tauri stars (CTTSs) GQ Lup and TW Hya obtained with the polarimetric upgrade to the HARPS spectrometer on the ESO 3.6 m telescope. We present data on bot h photospheric lines and emission lines, concentrating our discussion on the polarization properties of the ion{He}{1} emission lines at 5876 AA and 6678 AA. The ion{He}{1} lines in these CTTSs contain both narrow emission cores, believed to come from near the accretion shock region on these stars, and broad emission components which may come from either a wind or the large scale magnetospheric accretion flow. We detect strong polarization in the narrow component of the two ion{He}{1} emission lines in both stars. We observe a maximum implied field strength of $6.05 pm 0.24$ kG in the 5876 AA line of GQ Lup, making it the star with the highest field strength measured in this line for a CTTS. We find field strengths in the two ion{He}{1} lines that are consistent with each other, in contrast to what has been reported in the literature on at least one star. We do not detect any polarization in the broad component of the ion{He}{1} lines on these stars, strengthening the conclusion that they form over a substantially different volume relative the formation region of the narrow component of the ion{He}{1} lines.
146 - E. Akiyama , T. Muto , N. Kusakabe 2015
We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0.2 to 1.5 (11 - 81 AU) and the PI image shows a clear axi symmetric depression in polarized intensity at ~ 0.4 (~ 20 AU) from the central star, similar to the ~ 80 AU gap previously reported from HST images. Azimuthal polarized intensity profile also shows the disk beyond 0.2 is almost axisymmetric. We discuss two possible scenarios explaining the origin of the polarized intensity depression: 1) a gap structure may exist at ~ 20 AU from the central star because of shallow slope seen in the polarized intensity profile, and 2) grain growth may be occurring in the inner region of the disk. Multi-band observations at NIR and millimeter/sub-millimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely.
We present infrared (IR) and optical echelle spectra of the Classical T Tauri star TW Hydrae. Using the optical data, we perform detailed spectrum synthesis to fit atomic and molecular absorption lines and determine key stellar parameters: Teff = 412 6 pm 24 K, log g = 4.84 pm 0.16, [M/H] = -0.10 pm 0.12, vsini = 5.8 pm 0.6 km/s. The IR spectrum is used to look for Zeeman broadening of photospheric absorption lines. We fit four Zeeman sensitive Ti I lines near 2.2 microns and find the average value of the magnetic field over the entire surface is 2.61 pm 0.23 kG. In addition, several nearby magnetically insensitive CO lines show no excess broadening above that produced by stellar rotation and instrumental broadening, reinforcing the magnetic interpretation for the width of the Ti I lines. We carry out extensive tests to quantify systematic errors in our analysis technique which may result from inaccurate knowledge of the effective temperature or gravity, finding that reasonable errors in these quantities produce a 10% uncertainty in the mean field measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا