ﻻ يوجد ملخص باللغة العربية
The exact solution of directed self-avoiding walks confined to a slit of finite width and interacting with the walls of the slit via an attractive potential has been calculated recently. The walks can be considered to model the polymer-induced steric stabilisation and sensitised floculation of colloidal dispersions. The large width asymptotics led to a phase diagram different to that of a polymer attached to, and attracted to, a single wall. The question that arises is: can one interpolate between the single wall and two wall cases? In this paper we calculate the exact scaling functions for the partition function by considering the two variable asymptotics of the partition function for simultaneous large length and large width. Consequently, we find the scaling functions for the force induced by the polymer on the walls. We find that these scaling functions are given by elliptic theta-functions. In some parts of the phase diagram there is more a complex crossover between the single wall and two wall cases and we elucidate how this happens.
We test an improved finite-size scaling method for reliably extracting the critical temperature $T_{rm BKT}$ of a Berezinskii-Kosterlitz-Thouless (BKT) transition. Using known single-parameter logarithmic corrections to the spin stiffness $rho_s$ at
We investigate the use of matrix product states (MPS) to approximate ground states of critical quantum spin chains with periodic boundary conditions (PBC). We identify two regimes in the (N,D) parameter plane, where N is the size of the spin chain an
Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model, includi
The asymptotic analytic expression for the two-time free energy distribution function in (1+1) random directed polymers is derived in the limit when the two times are close to each other
A quantum tricritical point is shown to exists in coupled time-reversal symmetry (TRS) broken Majorana chains. The tricriticality separates topologically ordered, symmetry protected topological (SPT), and trivial phases of the system. Here we demonst