ترغب بنشر مسار تعليمي؟ اضغط هنا

Selfconsistent gauge-invariant theory of in-plane infrared response of high-Tc cuprate superconductors involving spin fluctuations

268   0   0.0 ( 0 )
 نشر من قبل Ji\\v{r}\\'i Chaloupka
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on results of our theoretical study of the in-plane infrared conductivity of the high-Tc cuprate superconductors using the model where charged planar quasiparticles are coupled to spin fluctuations. The computations include both the renormalization of the quasiparticles and the corresponding modification of the current-current vertex function (vertex correction), which ensures gauge invariance of the theory and local charge conservation in the system. The incorporation of the vertex corrections leads to an increase of the total intraband optical spectral weight (SW) at finite frequencies, a SW transfer from far infrared to mid infrared, a significant reduction of the SW of the superconducting condensate, and an amplification of characteristic features in the superconducting state spectra of the inverse scattering rate 1/tau. We also discuss the role of selfconsistency and propose a new interpretation of a kink occurring in the experimental low temperature spectra of 1/tau around 1000cm^{-1}.

قيم البحث

اقرأ أيضاً

We report a genuine phase diagram for a disorder-free CuO_2 plane based on the precise evaluation of the local hole density (N_h) by site-selective Cu-NMR studies on five-layered high-Tc cuprates. It has been unraveled that (1) the antiferromagnetic metallic state (AFMM) is robust up to N_h=0.17, (2) the uniformly mixed phase of superconductivity (SC) and AFMM is realized at N_h< 0.17, (3) the tetracritical point for the AFMM/(AFMM+SC)/SC/PM(Paramagnetism) phases may be present at N_h=0.15 and T=75 K, (4) Tc is maximum close to a quantum critical point (QCP) at which the AFM order collapses, suggesting the intimate relationship between the high-Tc SC and the AFM order. The results presented here strongly suggest that the AFM interaction plays the vital role as the glue for the Cooper pairs, which will lead us to a genuine understanding of why the Tc of cuprate superconductors is so high.
98 - J. Chaloupka , C. Bernhard , 2009
We report on results of our theoretical study of the c-axis infrared conductivity of bilayer high-Tc cuprate superconductors using a microscopic model involving the bilayer-split (bonding and antibonding) bands. An emphasis is on the gauge-invariance of the theory, which turns out to be essential for the physical understanding of the electrodynamics of these compounds. The description of the optical response involves local (intra-bilayer and inter-bilayer) current densities and local conductivities. The local conductivities are obtained using a microscopic theory, where the quasiparticles of the two bands are coupled to spin fluctuations. The coupling leads to superconductivity and is described at the level of generalized Eliashberg theory. Also addressed is the simpler case of quasiparticles coupled by a separable and nonretarded interaction. The gauge invariance of the theory is achieved by including a suitable class of vertex corrections. The resulting response of the model is studied in detail and an interpretation of two superconductivity-induced peaks in the experimental data of the real part of the c-axis conductivity is proposed. The peak around 400/cm is attributed to a collective mode of the intra-bilayer regions, that is an analogue of the Bogolyubov-Anderson mode playing a crucial role in the theory of the longitudinal response of superconductors. For small values of the bilayer splitting, its nature is similar to that of the transverse plasmon of the phenomenological Josephson superlattice model. The peak around 1000/cm is interpreted as a pair breaking-feature that is related to the electronic coupling through the spacing layers separating the bilayers.
We report the results of a muon spin rotation (muSR) study of the bulk of Bi{2+x}Sr{2-x}CaCu2O{8+delta}, as well as pure and Ca-doped YBa2Cu3Oy, which together with prior measurements reveal a universal inhomogeneous magnetic-field response of hole-d oped cuprates extending to temperatures far above the critical temperature (Tc). The primary features of our data are incompatible with the spatially inhomogeneous response being dominated by known charge density wave (CDW) and spin density wave (SDW) orders. Instead the normal-state inhomogeneous line broadening is found to scale with the maximum value Tc^max for each cuprate family, indicating it is controlled by the same energy scale as Tc. Since the degree of chemical disorder varies widely among the cuprates we have measured, the observed scaling constitutes evidence for an intrinsic electronic tendency toward inhomogeneity above Tc.
Developing a theory of high-temperature superconductivity in copper oxides is one of the outstanding problems in physics. Twenty-five years after its discovery, no consensus on the microscopic theory has been reached despite tremendous theoretical an d experimental efforts. Attempts to understand this problem are hindered by the subtle interplay among a few mechanisms and the presence of several nearly degenerate and competing phases in these systems. Here we provide unified parameter-free explanation of the observed oxygen-isotope effects on the critical temperature, the magnetic-field penetration depth, and on the normal-state pseudogap for underdoped cuprate superconductors within the framework of the bipolaron theory compatible with the strong Coulomb and Froehlich interactions, and with many other independent observations in these highly polarizable doped insulators. Remarkably, we also quantitatively explain measured critical temperatures and magnitudes of the magnetic-field penetration depth. The present work thus represents an ultimate proof of the bipolaron theory of high-temperature superconductivity, which takes into account essential Coulomb and electron-phonon interactions.
90 - Ling Qin , Jihong Qin , 2014
One of the most essential aspects of cuprate superconductors is a large pseudogap coexisting with a superconducting gap, then some anomalous properties can be understood in terms of the formation of the pseudogap. Within the kinetic energy driven sup erconducting mechanism, the effect of the pseudogap on the infrared response of cuprate superconductors in the superconducting-state is studied. By considering the interplay between the superconducting gap and pseudogap, the electron current-current correlation function is evaluated based on the linear response approach and it then is employed to calculate finite-frequency conductivity. It is shown that in the underdoped and optimally doped regimes, the transfer of the part of the low-energy spectral weight of the conductivity spectrum to the higher energy region to form a midinfrared band is intrinsically associated with the presence of the pseudogap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا