ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic gauge-invariant theory of the c-axis infrared response of bilayer cuprate superconductors and the origin of the superconductivity induced absorption bands

144   0   0.0 ( 0 )
 نشر من قبل Ji\\v{r}\\'i Chaloupka
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on results of our theoretical study of the c-axis infrared conductivity of bilayer high-Tc cuprate superconductors using a microscopic model involving the bilayer-split (bonding and antibonding) bands. An emphasis is on the gauge-invariance of the theory, which turns out to be essential for the physical understanding of the electrodynamics of these compounds. The description of the optical response involves local (intra-bilayer and inter-bilayer) current densities and local conductivities. The local conductivities are obtained using a microscopic theory, where the quasiparticles of the two bands are coupled to spin fluctuations. The coupling leads to superconductivity and is described at the level of generalized Eliashberg theory. Also addressed is the simpler case of quasiparticles coupled by a separable and nonretarded interaction. The gauge invariance of the theory is achieved by including a suitable class of vertex corrections. The resulting response of the model is studied in detail and an interpretation of two superconductivity-induced peaks in the experimental data of the real part of the c-axis conductivity is proposed. The peak around 400/cm is attributed to a collective mode of the intra-bilayer regions, that is an analogue of the Bogolyubov-Anderson mode playing a crucial role in the theory of the longitudinal response of superconductors. For small values of the bilayer splitting, its nature is similar to that of the transverse plasmon of the phenomenological Josephson superlattice model. The peak around 1000/cm is interpreted as a pair breaking-feature that is related to the electronic coupling through the spacing layers separating the bilayers.



قيم البحث

اقرأ أيضاً

307 - J. Chaloupka , D. Munzar 2007
We report on results of our theoretical study of the in-plane infrared conductivity of the high-Tc cuprate superconductors using the model where charged planar quasiparticles are coupled to spin fluctuations. The computations include both the renorma lization of the quasiparticles and the corresponding modification of the current-current vertex function (vertex correction), which ensures gauge invariance of the theory and local charge conservation in the system. The incorporation of the vertex corrections leads to an increase of the total intraband optical spectral weight (SW) at finite frequencies, a SW transfer from far infrared to mid infrared, a significant reduction of the SW of the superconducting condensate, and an amplification of characteristic features in the superconducting state spectra of the inverse scattering rate 1/tau. We also discuss the role of selfconsistency and propose a new interpretation of a kink occurring in the experimental low temperature spectra of 1/tau around 1000cm^{-1}.
72 - F. Yang , M. W. Wu 2018
Within a gauge-invariant microscopic kinetic theory, we study the electromagnetic response in the superconducting states. Both superfluid and normal-fluid dynamics are involved. We predict that the normal fluid is present only when the excited superc onducting velocity $v_s$ is larger than a threshold $v_L=|Delta|/k_F$. Interestingly, with the normal fluid, we find that there exists friction between the normal-fluid and superfluid currents. Due to this friction, part of the superfluid becomes viscous. Therefore, a three-fluid model: normal fluid, non-viscous and viscous superfluids, is proposed. For the stationary magnetic response, at $v_s<v_L$ with only the non-viscous superfluid, the Meissner supercurrent is excited and the gap equation can reduce to Ginzburg-Landau equation. At $v_s{ge}v_L$, with the normal fluid, non-viscous and viscous superfluids, in addition to the directly excited Meissner supercurrent in the superfluid, normal-fluid current is also induced through the friction drag with the viscous superfluid current. Due to the normal-fluid and viscous superfluid currents, the penetration depth is influenced by the scattering effect. In addition, a modified Ginzburg-Landau equation is proposed. We predict an exotic phase in which both the resistivity and superconducting gap are {em finite}. As for the optical response, the excited ${v_s}$ oscillates with time. When $v_s<v_L$, only the non-viscous superfluid is present whereas at $v_s{ge}v_L$, normal fluid, non-viscous and viscous superfluids are present. We show that the excited normal-fluid current exhibits the Drude-model behavior while the superfluid current consists of the Meissner supercurrent and Bogoliubov quasiparticle current. Due to the friction between the superfluid and normal-fluid currents, the optical conductivity is captured by the three-fluid model. ......
55 - F. Yang , M. W. Wu 2018
We show that the gauge-invariant kinetic equation of superconductivity provides an efficient approach to study the electromagnetic response of the gapless Nambu-Goldstone and gapful Higgs modes on an equal footing. We prove that the Fock energy in th e kinetic equation is equivalent to the generalized Wards identity. Hence, the gauge invariance directly leads to the charge conservation. Both linear and second-order responses are investigated. The linear response of the Higgs mode vanishes in the long-wave limit. Whereas the linear response of the Nambu-Goldstone mode interacts with the long-range Coulomb interaction, causing the original gapless spectrum lifted up to the plasma frequency as a result of the Anderson-Higgs mechanism, in consistency with the previous works. The second-order response exhibits interesting physics. On one hand, a finite second-order response of the Higgs mode is obtained in the long-wave limit. We reveal that this response, which has been experimentally observed, is attributed solely to the drive effect rather than the widely considered Anderson-pump effect. On the other hand, the second-order response of the Nambu-Goldstone mode, free from the influence of the long-range Coulomb interaction and hence the Anderson-Higgs mechanism, is predicted. We find that both Anderson-pump and drive effects play important role in this response. A tentative scheme to detect this second-order response is proposed.
145 - Ling Qin , Jihong Qin , 2014
One of the most essential aspects of cuprate superconductors is a large pseudogap coexisting with a superconducting gap, then some anomalous properties can be understood in terms of the formation of the pseudogap. Within the kinetic energy driven sup erconducting mechanism, the effect of the pseudogap on the infrared response of cuprate superconductors in the superconducting-state is studied. By considering the interplay between the superconducting gap and pseudogap, the electron current-current correlation function is evaluated based on the linear response approach and it then is employed to calculate finite-frequency conductivity. It is shown that in the underdoped and optimally doped regimes, the transfer of the part of the low-energy spectral weight of the conductivity spectrum to the higher energy region to form a midinfrared band is intrinsically associated with the presence of the pseudogap.
108 - A.A. Tsvetkov , D. Dulic 1999
We present grazing incidence reflectivity measurements in the far infrared region at temperatures above and below Tc for a series of thallium (Tl2Ba2CuO6, Tl2Ba2CaCu2O8) and bismuth (Bi2Sr2CuO6, Bi2Sr2CaCu2O8, and Bi(2-x)Pb(x)Sr2CaCu2O8) based cuprat e superconductors. From the spectra, which are dominated by the c-axis phonons, longitudinal frequencies (LO) are directly obtained. The reflectivity curves are well fitted by a series of Lorentz oscillators. In this way the transverse (TO) phonon frequencies were accurately determined. On the basis of the comparative study of the Bi and Tl based cuprates with different number of CuO2 layers per unit cell, we suggest modifications of the assignment of the main oxygen modes. We compare the LO frequencies in Bi2Sr2CaCu2O8 and Tl2Ba2Ca2Cu3O10 obtained from intrinsic Josephson junction characteristics with our measurements, and explain the discrepancy in LO frequencies obtained by the two different methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا