ﻻ يوجد ملخص باللغة العربية
Protoplanetary disks are mainly heated by radiation from the central star. Since the incident stellar flux at any radius is sensitive to the disk structure near that location, an unstable feedback may be present. Previous investigations show that the disk would be stable to finite-amplitude temperature perturbations if the vertical height of optical surface is everywhere directly proportional to the gas scale height and if the intercepted fraction of stellar radiation is determined from the local grazing angle. We show that these assumptions may not be generally applicable. Instead, we calculate the quasi-static thermal evolution of irradiated disks by directly integrating the global optical depths to determine the optical surface and the total emitting area-filling factor of surface dust. We show that, in disks with modest mass accretion rates, thermal waves are spontaneously and continually excited in the outer disk, propagate inward through the planet-forming domains, and dissipated at small radii where viscous dissipation is dominant. This state is quasi-periodic over several thermal timescales and its pattern does not depend on the details of the opacity law. The viscous dissipation resulting from higher mass accretion stabilizes this instability such that an approximately steady state is realized throughout the disk. In passive protostellar disks, especially transitional disks, these waves induce significant episodic changes in SEDs, on the time scales of years to decades, because the midplane temperatures can vary by a factor of two between the exposed and shadowed regions. The transitory peaks and troughs in the potential vorticity distribution may also lead to baroclinic instability and excite turbulence in theplanet-forming regions.
We study atomic line diagnostics of the inner regions of protoplanetary disks with our model of X-ray irradiated disk atmospheres which was previously used to predict observable levels of the NeII and NeIII fine-structure transitions at 12.81 and 15.
Global evolution and dispersal of protoplanetary disks (PPDs) is governed by disk angular momentum transport and mass-loss processes. Recent numerical studies suggest that angular momentum transport in the inner region of PPDs is largely driven by ma
(Abridged) The birth environment of the Sun will have influenced the conditions in the pre-solar nebula, including the attainable chemical complexity, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COM
Circumstellar disks are exposed to intense ultraviolet radiation from the young star. In the inner disks, the UV radiation can be enhanced by more than seven orders of magnitude compared with the average interstellar field, resulting in a physical an
Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constitue