ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic NLTE accretion disc spectra for the dwarf nova SS Cyg during an outburst cycle

106   0   0.0 ( 0 )
 نشر من قبل Thorsten Nagel
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Kromer




اسأل ChatGPT حول البحث

Dwarf nova outbursts result from enhanced mass transport through the accretion disc of a cataclysmic variable system. We assess the question of whether these outbursts are caused by an enhanced mass transfer from the late-type main sequence star onto the white dwarf (so-called mass transfer instability model, MTI) or by a thermal instability in the accretion disc (disc instability model, DIM). We compute non-LTE models and spectra of accretion discs in quiescence and outburst and construct spectral time sequences for discs over a complete outburst cycle. We then compare our spectra to published optical spectroscopy of the dwarf nova SS Cygni. In particular, we investigate the hydrogen and helium line profiles that are turning from emission into absorption during the rise to outburst. The evolution of the hydrogen and helium line profiles during the rise to outburst and decline clearly favour the disc-instability model. Our spectral model sequences allow us to distinguish inside-out and outside-in moving heating waves in the disc of SS Cygni, which can be related to symmetric and asymmetric outburst light curves, respectively.



قيم البحث

اقرأ أيضاً

73 - K. P. Mooley 2016
The connection between accretion and jet production in accreting white dwarf binary systems, especially dwarf novae, is not well understood. Radio wavelengths provide key insights into the mechanisms responsible for accelerating electrons, including jets and outflows. Here we present densely-sampled radio coverage, obtained with the Arcminute MicroKelvin Imager Large Array, of the dwarf nova SS Cyg during its February 2016 anomalous outburst. The outburst displayed a slower rise (3 days per mag) in the optical than typical ones, and lasted for more than 3 weeks. Rapid radio flaring on timescales <1 hour was seen throughout the outburst. The most intriguing behavior in the radio was towards the end of the outburst where a fast, luminous (giant), flare peaking at ~20 mJy and lasting for 15 minutes was observed. This is the first time that such a flare has been observed in SS Cyg, and insufficient coverage could explain its non-detection in previous outbursts. These data, together with past radio observations, are consistent with synchrotron emission from plasma ejection events as being the origin of the radio flares. However, the production of the giant flare during the declining accretion rate phase remains unexplained within the standard accretion-jet framework and appears to be markedly different to similar patterns of behavior in X-ray binaries.
In this paper we analyzed the behavior of the unusual dwarf nova EM Cyg using the data obtained in April-October, 2007 in Vyhorlat observatory (Slovak Republic) and in September, 2006 in Crimean Astrophysical Observatory (Ukraine). During our observa tions EM Cyg has shown outbursts in every 15-40 days. Because on the light curves of EM Cyg the partial eclipse of an accretion disc is observed we applied the eclipse mapping technique to reconstruct the temperature distribution in eclipsed parts of the disc. Calculations of the accretion rate in the system were made for the quiescent and the outburst states of activity for different distances.
We report null results on a two year photometric search for outburst predictors in SS Cyg. Observations in Johnson V and Cousins I were obtained almost daily for multiple hours per night for two observing seasons. The accumulated data are put through various statistical and visual analysis techniques but fails to detect any outburst predictors. However, analysis of 102 years of AAVSO archival visual data led to the detection of a correlation between a long term quasi-periodic feature at around 1,000-2,000 days in length and an increase in outburst rate.
104 - M. G. Revnivtsev 2012
We present the results of our studies of the aperiodic optical flux variability for SS Cyg, an accreting binary systemwith a white dwarf. The main set of observational data presented here was obtained with the ANDOR/iXon DU-888 photometer mounted on the RTT-150 telescope, which allowed a record(for CCD photometers) time resolution up to 8 ms to be achieved. The power spectra of the sources flux variability have revealed that the aperiodic variability contains information about the inner boundary of the optically thick flow in the binary system. We show that the inner boundary of the optically thick accretion disk comes close to the white dwarf surface at the maximum of the sources bolometric light curve, i.e., at the peak of the instantaneous accretion rate onto the white dwarf, while the optically thick accretion disk is truncated at distances 8.5e9 cm ~10 R_{WD} in the low state. We suggest that the location of the inner boundary of the accretion disk in the binary can be traced by studying the parameters of the power spectra for accreting white dwarfs. In particular, this allows the mass of the accreting object to be estimated.
Chandra HETG spectra of the prototypical dwarf novae SS Cyg and U Gem in quiescence and outburst are presented and discussed. When SS Cyg goes into outburst, it becomes dimmer in hard X-rays and displays a dramatic shift in its relative line strength s, whereas when U Gem goes into outburst, it becomes brighter in hard X-rays and displays only a minor shift in its relative line strengths. In both systems, the emission lines become significantly broader in outburst, signaling the presence of high velocity gas either in Keplerian orbits around the white dwarf or flowing outward from the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا