ﻻ يوجد ملخص باللغة العربية
We report null results on a two year photometric search for outburst predictors in SS Cyg. Observations in Johnson V and Cousins I were obtained almost daily for multiple hours per night for two observing seasons. The accumulated data are put through various statistical and visual analysis techniques but fails to detect any outburst predictors. However, analysis of 102 years of AAVSO archival visual data led to the detection of a correlation between a long term quasi-periodic feature at around 1,000-2,000 days in length and an increase in outburst rate.
The connection between accretion and jet production in accreting white dwarf binary systems, especially dwarf novae, is not well understood. Radio wavelengths provide key insights into the mechanisms responsible for accelerating electrons, including
Dwarf nova outbursts result from enhanced mass transport through the accretion disc of a cataclysmic variable system. We assess the question of whether these outbursts are caused by an enhanced mass transfer from the late-type main sequence star on
Chandra HETG spectra of the prototypical dwarf novae SS Cyg and U Gem in quiescence and outburst are presented and discussed. When SS Cyg goes into outburst, it becomes dimmer in hard X-rays and displays a dramatic shift in its relative line strength
Accreting white dwarfs in binary systems known as cataclysmic variables (CVs) have in recent years been shown to produce radio flares during outbursts, qualitatively similar to those observed from neutron star and black hole X-ray binaries, but their
Magakian et al. (2019) called attention to the current bright state of LkHa 225 South, which over the past two decades has changed from $>20^m$ to $<13^m$. We present recent optical photometric monitoring that shows colorless, non-sinusoidal, periodi