ترغب بنشر مسار تعليمي؟ اضغط هنا

Cruising through molecular bound state manifolds with radio frequency

69   0   0.0 ( 0 )
 نشر من قبل Johannes Hecker Denschlag
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emerging field of ultracold molecules with their rich internal structure is currently attracting a lot of interest. Various methods have been developed to produce ultracold molecules in pre-set quantum states. For future experiments it will be important to efficiently transfer these molecules from their initial quantum state to other quantum states of interest. Optical Raman schemes are excellent tools for transfer, but can be involved in terms of equipment, laser stabilization and finding the right transitions. Here we demonstrate a very general and simple way for transfer of molecules from one quantum state to a neighboring quantum state with better than 99% efficiency. The scheme is based on Zeeman tuning the molecular state to avoided level crossings where radio-frequency transitions can then be carried out. By repeating this process at different crossings, molecules can be successively transported through a large manifold of quantum states. As an important spin-off of our experiments, we demonstrate a high-precision spectroscopy method for investigating level crossings.



قيم البحث

اقرأ أيضاً

246 - N. Fabre , G. Maltese , F. Appas 2019
Encoding quantum information in continuous variables is intrinsically faulty. Nevertheless, redundant qubits can be used for error correction, as proposed by Gottesman, Kitaev and Preskill in Phys. Rev. A textbf{64} 012310, (2001). We show how to exp erimentally implement this encoding using time-frequency continuous degrees of freedom of photon pairs produced by spontaneous parametric down conversion. We experimentally illustrate our results using an integrated AlGaAs photon pairs source. We show how single qubit gates can be implemented and finally propose a theoretical scheme for correcting errors in a circuit-like and in a measurement-based architecture.
We present measurements on direct radio-frequency pumping of ion channels and pores bound in bilipid membranes. We make use of newly developed microcoaxes, which allow delivering the high frequency signal in close proximity to the membrane bound prot eins and ion channels. We find rectification of the radio-frequency signal, which is used to pump ions through the channels and pores.
We investigate two-frequency photoassociation of a weakly bound molecular state, focusing on a regime where the ac Stark shift is comparable to the halo-state energy. In this high-intensity regime, we observe features absent in low-intensity two-freq uency photoassociation. We experimentally measure the spectra of $^{86}$Sr atoms coupled to the least bound state of the $^{86}$Sr$_2$ ground electronic channel through an intermediate electronically excited molecular state. We compare the spectra to a simple three-level model that includes a two-frequency drive on each leg of the transition. With numerical solution of the time-dependent Schrodinger equation, we show that this model accurately captures (1) the existence of experimentally observed satellite peaks that arise from nonlinear processes, (2) the locations of the two-photon peak in the spectrum, including ac Stark shifts, and (3) in some cases, spectral lineshapes. To better understand these numerical results, we develop an approximate treatment of this model, based on Floquet and perturbation theory, that gives simple formulas that accurately capture the halo-state energies. We expect these expressions to be valuable tools to analyze and guide future two-frequency photoassociation experiments.
As superconducting qubit circuits become more complex, addressing a large array of qubits becomes a challenging engineering problem. Dense arrays of qubits benefit from, and may require, access via the third dimension to alleviate interconnect crowdi ng. Through-silicon vias (TSVs) represent a promising approach to three-dimensional (3D) integration in superconducting qubit arrays -- provided they are compact enough to support densely-packed qubit systems without compromising qubit performance or low-loss signal and control routing. In this work, we demonstrate the integration of superconducting, high-aspect ratio TSVs -- 10 $mu$m wide by 20 $mu$m long by 200 $mu$m deep -- with superconducting qubits. We utilize TSVs for baseband control and high-fidelity microwave readout of qubits using a two-chip, bump-bonded architecture. We also validate the fabrication of qubits directly upon the surface of a TSV-integrated chip. These key 3D integration milestones pave the way for the control and readout of high-density superconducting qubit arrays using superconducting TSVs.
170 - Matthew T. Simons 2021
We demonstrate the use of multiple atomic-level Rydberg-atom schemes for continuous frequency detection of radio frequency (RF) fields. Resonant detection of RF fields by electromagnetically-induced transparency and Autler-Townes (AT) in Rydberg atom s is typically limited to frequencies within the narrow bandwidth of a Rydberg transition. By applying a second field resonant with an adjacent Rydberg transition, far-detuned fields can be detected through a two-photon resonance AT splitting. This two-photon AT splitting method is several orders of magnitude more sensitive than off-resonant detection using the Stark shift. We present the results of various experimental configurations and a theoretical analysis to illustrate the effectiveness of this multiple level scheme. These results show that this approach allows for the detection of frequencies in continuous band between resonances with adjacent Rydberg states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا