ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio-Frequency Rectification on Membrane Bound Pores

56   0   0.0 ( 0 )
 نشر من قبل Hua Qin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements on direct radio-frequency pumping of ion channels and pores bound in bilipid membranes. We make use of newly developed microcoaxes, which allow delivering the high frequency signal in close proximity to the membrane bound proteins and ion channels. We find rectification of the radio-frequency signal, which is used to pump ions through the channels and pores.

قيم البحث

اقرأ أيضاً

We report the rectification of a constant wave radio frequency (RF) current by using a single-layer magnetic nanowire; a direct-current voltage is resonantly generated when the RF current flows through the nanowire. The mechanism of the rectification is discussed in terms of the spin torque diode effect reported for magnetic tunnel junction devices and the rectification is shown to be direct attributable to resonant spin wave excitation by the RF current.
Two-dimensional crystals with angstrom-scale pores are widely considered as candidates for a next generation of molecular separation technologies aiming to provide extreme selectivity combined with high flow rates. Here we study gas transport through individual graphene pores with an effective diameter of about 2 angstroms, or about one missing carbon ring, which are created reproducibly by a short-time exposure to a low-kV electron beam. Helium and hydrogen permeate easily through these pores whereas larger molecules such as xenon and methane are blocked. Permeating gases experience activation barriers that increase quadratically with the kinetic diameter, and the transport process crucially involves surface adsorption. Our results reveal underlying mechanisms for the long sought-after exponential selectivity and suggest the bounds on possible performance of porous two-dimensional membranes.
We compute the absolute Poissons ratio $ u$ and the bending rigidity exponent $eta$ of a free-standing two-dimensional crystalline membrane embedded into a space of large dimensionality $d = 2 + d_c$, $d_c gg 1$. We demonstrate that, in the regime of anomalous Hookes law, the absolute Poissons ratio approaches material independent value determined solely by the spatial dimensionality $d_c$: $ u = -1 +2/d_c-a/d_c^2+dots$ where $aapprox 1.76pm 0.02$. Also, we find the following expression for the exponent of the bending rigidity: $eta = 2/d_c+(73-68zeta(3))/(27 d_c^2)+dots$. These results cannot be captured by self-consistent screening approximation.
101 - S. Kondrat , P. Wu , R. Qiao 2013
Having smaller energy density than batteries, supercapacitors have exceptional power density and cyclability. Their energy density can be increased using ionic liquids and electrodes with sub-nanometer pores, but this tends to reduce their power dens ity and compromise the key advantage of supercapacitors. To help address this issue through material optimization, here we unravel the mechanisms of charging sub-nanometer pores with ionic liquids using molecular simulations, navigated by a phenomenological model. We show that charging of ionophilic pores is a diffusive process, often accompanied by overfilling followed by de-filling. In sharp contrast to conventional expectations, charging is fast because ion diffusion during charging can be an order of magnitude faster than in bulk, and charging itself is accelerated by the onset of collective modes. Further acceleration can be achieved using ionophobic pores by eliminating overfilling/de-filling and thus leading to charging behavior qualitatively different from that in conventional, ionophilic pores.
We have embedded an AlGaAs/GaAs based, gated 2D hole system (2DHS) into an impedance transformer $LC$ circuit, and show that by using radio-frequency reflectometry it is possible to perform sensitive, large bandwidth, electrical resistance measuremen ts of 2D systems at mK temperatures. We construct a simple lumped element model where the gated 2DHS is described as a resistive transmission line. The model gives a qualitative understanding of the experimental results. As an example, we use our method to map out the Landau level evolution in a 2DHS as a function of magnetic field and gate voltage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا