ﻻ يوجد ملخص باللغة العربية
We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and a fluctuating wall. At the left boundary, particles are injected onto the lattice; from there, the particles hop to the right. Along the lattice, particles can adsorb or desorb, and the right boundary is defined by a wall particle. The confining wall particle has intrinsic forward and backward hopping, a net leftward drift, and cannot desorb. Performing Monte Carlo simulations and using a moving-frame finite segment approach coupled to mean field theory, we find the parameter regimes in which the wall acquires a steady state position. In other regimes, the wall will either drift to the left and fall off the lattice at the injection site, or drift indefinitely to the right. Our results are discussed in the context of non-equilibrium phases of the system, fluctuating boundary layers, and particle densities in the lab frame versus the frame of the fluctuating wall.
The transfer matrix and matrix multiplication ansatz, when applied to nonequilibrium steady states in asymmetric exclusion processed and traffic models, has given many exact results for phase diagrams, bulk densities and fluxes, as well as density pr
Single-file Brownian motion in periodic structures is an important process in nature and technology, which becomes increasingly amenable for experimental investigation under controlled conditions. To explore and understand generic features of this mo
We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with an amplitude large compared to the thermal energy. In a closed system, we find surprising features of the steady-state current in dependence of the particle d
We show that the known matrix representations of the stationary state algebra of the Asymmetric Simple Exclusion Process (ASEP) can be interpreted combinatorially as various weighted lattice paths. This interpretation enables us to use the constant t
We consider the dynamics of fluctuations in the quantum asymmetric simple exclusion process (Q-ASEP) with periodic boundary conditions. The Q-ASEP describes a chain of spinless fermions with random hoppings that are induced by a Markovian environment