ﻻ يوجد ملخص باللغة العربية
Single-file Brownian motion in periodic structures is an important process in nature and technology, which becomes increasingly amenable for experimental investigation under controlled conditions. To explore and understand generic features of this motion, the Brownian asymmetric simple exclusion process (BASEP) was recently introduced. The BASEP refers to diffusion models, where hard spheres are driven by a constant drag force through a periodic potential. Here, we derive general properties of the rich collective dynamics in the BASEP. Average currents in the steady state change dramatically with the particle size and density. For an open system coupled to particle reservoirs, extremal current principles predict various nonequilibrium phases, which we verify by Brownian dynamics simulations. For general pair interactions we discuss connections to single-file transport by traveling-wave potentials and prove the impossibility of current reversals in systems driven by a constant drag and by traveling waves.
We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with an amplitude large compared to the thermal energy. In a closed system, we find surprising features of the steady-state current in dependence of the particle d
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (Single File conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong inter-particle correlations
We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and a fluctuating wall. At the left boundary, particles are injected onto the lattice; from there, the particles hop to the right. Along the lattice,
We revisit the totally asymmetric simple exclusion process with open boundaries (TASEP), focussing on the recent discovery by de Gier and Essler that the model has a dynamical transition along a nontrivial line in the phase diagram. This line coincid
We study the effects of an intermittent harmonic potential of strength $mu = mu_0 u$ -- that switches on and off stochastically at a constant rate $gamma$, on an overdamped Brownian particle with damping coefficient $ u$. This can be thought of as a