ﻻ يوجد ملخص باللغة العربية
Axion-Like Particles (ALPs) are predicted by many extensions of the Standard Model and give rise to characteristic dimming and polarization effects in a light beam travelling in a magnetic field. In this Letter, we demonstrate that photon-ALP mixing in cosmic magnetic fields produces an observable distortion in the energy spectra of distant gamma-ray sources (like AGN) for ranges of the ALP parameters allowed by all available constraints. The resulting effect is expected to show up in the energy band 100 MeV - 100 GeV, and so it can be serched with the upcoming GLAST mission.
Dark Matter (DM) may be comprised of axion-like particles (ALPs) with couplings to photons and the standard model fermions. In this paper we study photon signals arising from cosmic ray (CR) electron scattering on background ALPs. For a range of mass
Coupling of axion-like particles (ALPs) to photons in the presence of background magnetic field affects propagation of gamma-rays through magnetized environments. This results in modification in the gamma-ray spectra of sources in or behind galaxy cl
We propose a method to reveal axions and axion-like particles based on interferometric measurement of neutron beams. We consider an interferometer in which the neutron beam is split in two sub-beams propagating in regions with differently oriented ma
We investigate the possibility that axion-like particles (ALPs) with various potentials account for the isotropic birefringence recently reported by analyzing the Planck 2018 polarization data. For the quadratic and cosine potentials, we obtain lower
We explore the sensitivity of photon-beam experiments to axion-like particles (ALPs) with QCD-scale masses whose dominant coupling to the Standard Model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need