ترغب بنشر مسار تعليمي؟ اضغط هنا

Neon and Argon optical emission lines in ionized gaseous nebulae: Implications and applications

160   0   0.0 ( 0 )
 نشر من قبل Enrique P\\'erez-Montero
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we present a study of the strong optical collisional emission lines of Ne and Ar in an heterogeneous sample of ionized gaseous nebulae for which it is possible to derive directly the electron temperature and hence the chemical abundances of neon and argon. We calculate using a grid of photoionization models new ionization correction factors for these two elements and we study the behaviour of Ne/O and Ar/O abundance ratios with metallicity. We find a constant value for Ne/O, while there seems to be some evidence for the existence of negative radial gradients of Ar/O over the disks of some nearby spirals. We study the relation between the intensities of the emission lines of [NeIII] at 3869 AA and [OIII] at 4959 AA and 5007 AA. This relation can be used in empirical calibrations and diagnostic ratios extending their applicability to bluer wavelengths and therefore to samples of objects at higher redshifts. Finally, we propose a new diagnostic using [OII], [NeIII] and Hdelta emission lines to derive metallicities for galaxies at high z.

قيم البحث

اقرأ أيضاً

147 - V. Luridiana 2008
(abridged) Non-ionizing stellar continua are a source of photons for continuum pumping in the hydrogen Lyman transitions. In the environments where these transitions are optically thick, deexcitation occurs through higher series lines, so that the fl ux in these lines has a fluorescent contribution in addition to recombination; in particular, Balmer emissivities are systematically enhanced above case B. The effectiveness of such mechanism in HII regions and the adequacy of photoionization models as a tool to study it are the two main focuses of this work. We find that photoionization models of H II regions illuminated by low-resolution population synthesis models significantly overpredict the fluorescent contribution to the Balmer lines. Conversely, photoionization models in which the non-ionizing part of the continuum is omitted or is not transferred underpredict the fluorescent contribution to the Balmer lines, producing a bias of similar amplitude in the opposite direction. In this paper, we carry out realistic estimations of the fluorescent Balmer intensity and discuss the variations to be expected as the simulated observational setup and the stellar populations parameters are varied. In all the cases explored, we find that fluorescent excitation provides a significant contribution. We also show that differential fluorescent enhancement may produce line-of-sight differences in the Balmer decrement, mimicking interstellar extinction. Fluorescent excitation emerges from our study as a small but important mechanism for the enhancement of Balmer lines, which should be taken into account in the abundance analysis of photoionized regions, particularly in the case of high-precision applications such as the determination of primordial helium.
142 - W. Wang 2004
We present a comparison of electron densities derived from optical forbidden line diagnostic ratios for a sample of over a hundred nebulae. We consider four density indicators, the [O II] $lambda3729/lambda3726$, [S II] $lambda6716/lambda6731$, [Cl I II] $lambda5517/lambda5537$ and [Ar IV] $lambda4711/lambda4740$ doublet ratios. Except for a few H II regions for which data from the literature were used, diagnostic line ratios were derived from our own high quality spectra. For the [O II] doublet ratio, we find that our default atomic data set, consisting of transition probabilities (Aij) from Zeippen (1982} and collision strengths from Pradhan (1976), fit the observations well, although at high electron densities, the [O II]doublet ratio yields densities systematically lower than those given by the [S II] doublet ratio, suggesting that the ratio of Aij of the [O II] doublet,$A(lambda3729)/A(lambda3726)$, given by Zeippen (1982) may need to be revised upwards by ~6%. Our analysis also shows that the more recent calculations of [O II] A value by Zeippen (1987a) and collision strengths by McLaughlin & Bell (1998) are inconsistent with the observations at the high and low density limits, respectively, and can therefore be ruled out. We confirm the earlier result of Copetti & Writzl (2002) that the [O II] A values calculated by Wiese et al. (1996) yield electron densities systematically lower than those deduced from the [S II] doublet ratio and that the discrepancy is most likely caused by errors in the A values calculated by Wiese et al. Using our default atomic data set for [ion{O}{ii}], we find that $N_{rm e}([ion{O}{ii}]) la N_{rm e}([ion{S}{ii}]) approx N_{rm e}([ion{Cl}{iii}])< N_{rm e}([ion{Ar} {iv}])$.
53 - B. Lefloch 2003
We report on spectro-imaging observations of the Herbig-Haro 2 outflow with the ISOCAM camera onboard the Infrared Space Observatory (ISO). The [Ne II}] 12.81 microns and [Ne III]15.55 microns lines are detected only towards the jet working surface ( HH 2H), consistent with the high excitation of this knot in the optical range, while H2 pure rotational emission is found all over the shocked region HH 2. The low energy transition S(2) traces warm gas (T approx. 400K) peaked towards knots E-F and extended ejecta (T approx. 250-380) with masses of a few 0.001 solar mass in the high-velocity CO outflow extending between the powering source and HH 2. Such emission could arise from low-velocity C-type shocks (v= 10-15 km/s). The higher transitions S(3)-S(7) trace the emission of hot shocked gas (T= 1000-1400K) from individual optical knots in the HH 2 region. The ortho to para (OTP) ratio exhibits large spatial variations between 1.2 (E) and 2.5 (H), well below its value at LTE. The emission of the S(3)-S(7) lines is well accounted for by planar C-shock models with a typical velocity V= 20-30 km/s propagating into a medium of density 10^4-10^5 cm-3 with an initial OTP ratio close to 1 in the pre-shock gas. In the leading edge of the jet, where the geometry of the emission allows a simple modelling, a good agreement is found with velocities derived from the optical proper motions measured in the ionized gas.
This paper details a novel, patent pending, abrasive machining manufacturing process for the formation of sub-millimetre holes in THGEMs, with the intended application in gaseous and dual-phase TPCs. Abrasive machining favours a non-ductile substrate such as glasses or ceramics. This innovative manufacturing process allows for unprecedented versatility in THGEM substrates, electrodes, and hole geometry and pattern. Consequently, THGEMs produced via abrasive machining can be tailored for specific properties, for example: high stiffness, low total thickness variation, radiopurity, moisture absorption/outgassing and/or carbonisation resistance. This paper specifically focuses on three glass substrate THGEMs (G-THGEMs) made from Schott Borofloat 33 and Fused Silica. Circular and hexagonal hole shapes are also investigated. The G-THGEM electrodes are made from Indium Tin Oxide (ITO), with a resistivity of 150 $Omega$/Sq. All G-THGEMs were characterised in an optical (EMCCD) readout GArTPC, and compared to a traditionally manufactured FR4 THGEM, with their charging and secondary scintillation (S2) light production behaviour analysed.
Deep spectrophotometry has proved to be a fundamental tool to improve our knowledge on the chemical content of planetary nebulae. With the arrival of very efficient spectrographs installed in the largest ground-based telescopes, outstanding spectra h ave been obtained. These data are essential to constrain state-of-the-art nucleosynthesis models in asymptotic giant branch stars and, in general, to understand the chemical evolution of our Galaxy. In this paper we review the last advances on the chemical composition of the ionized gas in planetary nebulae based on faint emission lines observed through very deep spectrophotometric data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا