ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical abundances in Galactic planetary nebulae from faint emission lines

91   0   0.0 ( 0 )
 نشر من قبل Jorge Garc\\'ia-Rojas
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep spectrophotometry has proved to be a fundamental tool to improve our knowledge on the chemical content of planetary nebulae. With the arrival of very efficient spectrographs installed in the largest ground-based telescopes, outstanding spectra have been obtained. These data are essential to constrain state-of-the-art nucleosynthesis models in asymptotic giant branch stars and, in general, to understand the chemical evolution of our Galaxy. In this paper we review the last advances on the chemical composition of the ionized gas in planetary nebulae based on faint emission lines observed through very deep spectrophotometric data.

قيم البحث

اقرأ أيضاً

94 - J. Garcia-Rojas 2017
We present deep high-resolution (R~15,000) and high-quality UVES optical spectrophotometry of nine planetary nebulae with dual-dust chemistry. We compute physical conditions from several diagnostics. Ionic abundances for a large number of ions of N, O, Ne, S, Cl, Ar, K, Fe and Kr are derived from collisionally excited lines. Elemental abundances are computed using state-of-the-art ionization correction factors. We derive accurate C/O ratios from optical recombination lines. We have re-analyzed additional high-quality spectra of 14 PNe from the literature following the same methodology. Comparison with asymptotic giant branch models reveals that about half of the total sample objects are consistent with being descendants of low-mass progenitor stars (M < 1.5 Msun). Given the observed N/O, C/O, and He/H ratios, we cannot discard that some of the objects come from more massive progenitor stars (M > 3--4 Msun) that have suffered a mild HBB. None of the objects seem to be a descendant of very massive progenitors. We propose that in most of the planetary nebulae studied here, the PAHs have been formed through the dissociation of the CO molecule. The hypothesis of a last thermal pulse that turns O-rich PNe into C-rich PNe is discarded, except in three objects, that show C/O > 1. We also discuss the possibility of a He pre-enrichment to explain the most He-enriched objects. We cannot discard other scenarios like extra mixing, stellar rotation or binary interactions to explain the chemical abundances behaviour observed in our sample.
159 - N. C. Sterling 2020
Nebular spectroscopy is a valuable tool for assessing the production of heavy elements by slow neutron(n)-capture nucleosynthesis (the s-process). Several transitions of n-capture elements have been identified in planetary nebulae (PNe) in the last f ew years, with the aid of sensitive high-resolution near-infrared spectrometers. Combined with optical spectroscopy, the newly discovered near-infrared lines enable more accurate abundance determinations than previously possible, and provide access to elements that had not previously been studied in PNe or their progenitors. Neutron-capture elements have also been detected in PNe in the Sagittarius Dwarf galaxy and in the Magellanic Clouds. In this brief review, I discuss developments in observational studies of s-process enrichments in PNe, with an emphasis on the last five years, and note some open questions and preliminary trends.
(abridged) Deep long-slit optical spectrophotometric observations are presented for 25 Galactic bulge planetary nebulae (GBPNe) and 6 Galactic disk planetary nebulae (GDPNe). The spectra, combined with archival ultraviolet spectra obtained with the I nternational Ultraviolet Explorer (IUE) and infrared spectra obtained with the Infrared Space Observatory (ISO), have been used to carry out a detailed plasma diagnostic and element abundance analysis utilizing both collisional excited lines (CELs) and optical recombination lines (ORLs). Comparisons of plasma diagnostic and abundance analysis results obtained from CELs and from ORLs reproduce many of the patterns previously found for GDPNe. In particular we show that the large discrepancies between electron temperatures (Tes) derived from CELs and from ORLs appear to be mainly caused by abnormally low values yielded by recombination lines and/or continua. Similarly, the large discrepancies between heavy element abundances deduced from ORLs and from CELs are largely caused by abnormally high values obtained from ORLs, up to tens of solar in extreme cases. It appears that whatever mechanisms are causing the ubiquitous dichotomy between CELs and ORLs, their main effects are to enhance the emission of ORLs, but hardly affect that of CELs. It seems that heavy element abundances deduced from ORLs may not reflect the bulk composition of the nebula. Rather, our analysis suggests that ORLs of heavy element ions mainly originate from a previously unseen component of plasma of Tes of just a few hundred Kelvin, which is too cool to excite any optical and UV CELs.
This chapter presents a review on the latest advances in the computation of physical conditions and chemical abundances of elements present in photoionized gas H II regions and planetary nebulae). The arrival of highly sensitive spectrographs attache d to large telescopes and the development of more sophisticated and detailed atomic data calculations and ionization correction factors have helped to raise the number of ionic species studied in photoionized nebulae in the last years, as well as to reduce the uncertainties in the computed abundances. Special attention will be given to the detection of very faint lines such as heavy-element recombination lines of C, N and O in H II regions and planetary nebulae, and collisionally excited lines of neutron-capture elements (Z >30) in planetary nebulae.
127 - A. L. Mashburn 2016
We present near-infrared spectra of ten planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5-m Baade and 8.1-m Gemini South Telescopes, respectively. We detect Se an d/or Kr emission lines in eight of these objects, the first detections of n-capture elements in Magellanic Cloud PNe. Our abundance analysis shows large s-process enrichments of Kr (0.6-1.3 dex) in the six PNe in which it was detected, and Se is enriched by 0.5-0.9 dex in five objects. We also estimate upper limits to Rb and Cd abundances in these objects. Our abundance results for the LMC are consistent with the hypothesis that PNe with 2--3 M$_{odot}$ progenitors dominate the bright end of the PN luminosity function in young gas-rich galaxies. We find no significant correlations between s-process enrichments and other elemental abundances, central star temperature, or progenitor mass, though this is likely due to our small sample size. We determine S abundances from our spectra and find that [S/H] agrees with [Ar/H] to within 0.2 dex for most objects, but is lower than [O/H] by 0.2-0.4 dex in some PNe, possibly due to O enrichment via third dredge-up. Our results demonstrate that n-capture elements can be detected in PNe belonging to nearby galaxies with ground-based telescopes, allowing s-process enrichments to be studied in PN populations with well-determined distances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا