ﻻ يوجد ملخص باللغة العربية
We study a quantum phase transition between a phase which is topologically ordered and one which is not. We focus on a spin model, an extension of the toric code, for which we obtain the exact ground state for all values of the coupling constant that takes the system across the phase transition. We compute the entanglement and the topological entropy of the system as a function of this coupling constant, and show that the topological entropy remains constant all the way up to the critical point, and jumps to zero beyond it. Despite the jump in the topological entropy, the transition is second order as detected via any local observable.
Fracton topological order (FTO) is a new classification of correlated phases in three spatial dimensions with topological ground state degeneracy (GSD) scaling up with system size, and fractional excitations which are immobile or have restricted mobi
We consider a system of mutually interacting spin 1/2 embedded in a transverse magnetic field which undergo a second order quantum phase transition. We analyze the entanglement properties and the spin squeezing of the ground state and show that, cont
To harness technological opportunities arising from optically controlled quantum many-body states a deeper theoretical understanding of driven-dissipative interacting systems and their nonequilibrium phase transitions is essential. Here we provide nu
A number of tools have been developed to detect topological phase transitions in strongly correlated quantum systems. They apply under different conditions, but do not cover the full range of many-body models. It is hence desirable to further expand
A local Hamiltonian with Topological Quantum Order (TQO) has a robust ground state degeneracy that makes it an excellent quantum memory candidate. This memory can be corrupted however if part of the state leaves the protected ground state manifold an