ﻻ يوجد ملخص باللغة العربية
A number of tools have been developed to detect topological phase transitions in strongly correlated quantum systems. They apply under different conditions, but do not cover the full range of many-body models. It is hence desirable to further expand the toolbox. Here, we propose to use quasiparticle properties to detect quantum phase transitions. The approach is independent from the choice of boundary conditions, and it does not assume a particular lattice structure. The probe is hence suitable for, e.g., fractals and quasicrystals. The method requires that one can reliably create quasiparticles in the considered systems. In the simplest cases, this can be done by a pinning potential, while it is less straightforward in more complicated systems. We apply the method to several rather different examples, including one that cannot be handled by the commonly used probes, and in all the cases we find that the numerical costs are low. This is so, because a simple property, such as the charge of the anyons, is sufficient to detect the phase transition point. For some of the examples, this allows us to study larger systems and/or further parameter values compared to previous studies.
We study a generalization of the two-dimensional transverse-field Ising model, combining both ferromagnetic and antiferromagnetic two-body interactions, that hosts exact global and local Z2 gauge symmetries. Using exact diagonalization and stochastic
Fracton topological order (FTO) is a new classification of correlated phases in three spatial dimensions with topological ground state degeneracy (GSD) scaling up with system size, and fractional excitations which are immobile or have restricted mobi
We study the two-dimensional Kane-Mele-Hubbard model at half filling by means of quantum Monte Carlo simulations. We present a refined phase boundary for the quantum spin liquid. The topological insulator at finite Hubbard interaction strength is adi
The interest in the topological properties of materials brings into question the problem of topological phase transitions. As a control parameter is varied, one may drive a system through phases with different topological properties. What is the natu
A local Hamiltonian with Topological Quantum Order (TQO) has a robust ground state degeneracy that makes it an excellent quantum memory candidate. This memory can be corrupted however if part of the state leaves the protected ground state manifold an