ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective field theory and cold Fermi gases near unitary limit

41   0   0.0 ( 0 )
 نشر من قبل Boris Krippa
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Boris Krippa




اسأل ChatGPT حول البحث

We study a dynamics of ultracold Fermi-gases near the unitary limit in the framework of Effective Field Theory. It is shown that, while one can obtain a reasonable description of the universal proportionality constant both in the narrow and the broad Feshbach resonance limits, the reguirement of the reparametrisation invariance leads to appearance of the three body forces needed to cancel the otherwise arising off-shell uncertainties. The size of the unsertainties is estimated.

قيم البحث

اقرأ أيضاً

130 - Boris Krippa 2008
We study the exact renormalisation group flow for ultracold Fermi-gases in unitary regime. We introduce a pairing field to describe the formation of the Cooper pairs, and take a simple ansatz for the effective action. Set of approximate flow equation s for the effective couplings including boson and fermionic fluctuations is derived. At some value of the running scale, the system undergoes a phase transition to a gapped phase. The values of the energy density, chemical potential, pairing gap and the corresponding proportionality constants relating the interacting and non-interacting Fermi gases are calculated. Standard mean field results are recovered if we omit the boson loops.
We study the virial expansion for three-dimensional Bose and Fermi gases at finite temperature using an approximation that only considers two-body processes and is valid for high temperatures and low densities. The first virial coefficients are compu ted and the second is exact. The results are obtained for the full range of values of the scattering length and the unitary limit is recovered as a particular case. A weak coupling expansion is performed and the free case is also obtained as a proper limit. The influence of an anisotropic harmonic trap is considered using the Local Density Approximation - LDA, analytical results are obtained and the special case of the isotropic trap is discussed in detail.
We use a finite temperature effective field theory recently developed for superfluid Fermi gases to investigate the properties of dark solitons in these superfluids. Our approach provides an analytic solution for the dip in the order parameter and th e phase profile accross the soliton, which can be compared with results obtained in the framework of the Bogoliubov - de Gennes equations. We present results in the whole range of the BCS-BEC crossover, for arbitrary temperatures, and taking into account Gaussian fluctuations about the saddle point. The obtained analytic solutions yield an exact energy-momentum relation for a dark soliton showing that the soliton in a Fermi gas behaves like a classical particle even at nonzero temperatures. The spatial profile of the pair field and for the parameters of state for the soliton are analytically studied. In the strong-coupling regime and/or for sufficiently high temperatures, the obtained analytic solutions match well the numeric results obtained using the Bogoliubov - de Gennes equations.
Condensed Fermi systems with an odd number of particles can be described by means of polarizing external fields having a time-odd character. We illustrate how this works for Fermi gases and atomic nuclei treated by density functional theory or Hartre e-Fock-Bogoliubov (HFB) theory. We discuss the method based on introducing two chemical potentials for different superfluid components, whereby one may change the particle-number parity of the underlying quasiparticle vacuum. Formally, this method is a variant of non-collective cranking, and the procedure is equivalent to the so-called blocking. We present and exemplify relations between the two-chemical-potential method and the cranking approximation for Fermi gases and nuclei.
117 - J. J. Kinnunen 2011
The Hartree energy shift is calculated for a unitary Fermi gas. By including the momentum dependence of the scattering amplitude explicitly, the Hartree energy shift remains finite even at unitarity. Extending the theory also for spin-imbalanced syst ems allows calculation of polaron properties. The results are in good agreement with more involved theories and experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا