ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact renormalisation group flow for ultracold Fermi gases in unitary limit

130   0   0.0 ( 0 )
 نشر من قبل Boris Krippa
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Boris Krippa




اسأل ChatGPT حول البحث

We study the exact renormalisation group flow for ultracold Fermi-gases in unitary regime. We introduce a pairing field to describe the formation of the Cooper pairs, and take a simple ansatz for the effective action. Set of approximate flow equations for the effective couplings including boson and fermionic fluctuations is derived. At some value of the running scale, the system undergoes a phase transition to a gapped phase. The values of the energy density, chemical potential, pairing gap and the corresponding proportionality constants relating the interacting and non-interacting Fermi gases are calculated. Standard mean field results are recovered if we omit the boson loops.

قيم البحث

اقرأ أيضاً

40 - Boris Krippa 2007
We study a dynamics of ultracold Fermi-gases near the unitary limit in the framework of Effective Field Theory. It is shown that, while one can obtain a reasonable description of the universal proportionality constant both in the narrow and the broad Feshbach resonance limits, the reguirement of the reparametrisation invariance leads to appearance of the three body forces needed to cancel the otherwise arising off-shell uncertainties. The size of the unsertainties is estimated.
We investigate the dimensional crossover from three to two dimensions in an ultracold Fermi gas across the whole BCS-BEC crossover. Of particular interest is the strongly interacting regime as strong correlations are more pronounced in reduced dimens ions. Our results are obtained from first principles within the framework of the functional renormalisation group (FRG). Here, the confinement of the transverse direction is imposed by means of periodic boundary conditions. We calculate the equation of state, the gap parameter at zero temperature and the superfluid transition temperature across a wide range of transversal confinement length scales. Particular emphasis is put on the determination of the finite temperature phase diagram for different confinement length scales. In the end, our results are compared with recent experimental observations and we discuss them in the context of other theoretical works.
We study the virial expansion for three-dimensional Bose and Fermi gases at finite temperature using an approximation that only considers two-body processes and is valid for high temperatures and low densities. The first virial coefficients are compu ted and the second is exact. The results are obtained for the full range of values of the scattering length and the unitary limit is recovered as a particular case. A weak coupling expansion is performed and the free case is also obtained as a proper limit. The influence of an anisotropic harmonic trap is considered using the Local Density Approximation - LDA, analytical results are obtained and the special case of the isotropic trap is discussed in detail.
117 - J. J. Kinnunen 2011
The Hartree energy shift is calculated for a unitary Fermi gas. By including the momentum dependence of the scattering amplitude explicitly, the Hartree energy shift remains finite even at unitarity. Extending the theory also for spin-imbalanced syst ems allows calculation of polaron properties. The results are in good agreement with more involved theories and experiments.
160 - M. Y. Veillette , D. E. Sheehy , 2006
We analyze strongly interacting Fermi gases in the unitary regime by considering the generalization to an arbitrary number N of spin-1/2 fermion flavors with Sp(2N) symmetry. For N=infty this problem is exactly solved by the BCS-BEC mean-field theory , with corrections small in the parameter 1/N. The large-N expansion provides a systematic way to determine corrections to mean-field predictions, allowing the calculation of a variety of thermodynamic quantities at (and in the proximity to) unitarity, including the energy, the pairing gap, and upper-critical polarization (in the case of a polarized gas) for the normal to superfluid instability. For the physical case of N=1, among other quantities, we predict in the unitarity regime, the energy of the gas to be xi=0.28 times that for the non-interacting gas and the pairing gap to be 0.52 times the Fermi energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا