ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximal planar scale-free Sierpinski networks with small-world effect and power-law strength-degree correlation

246   0   0.0 ( 0 )
 نشر من قبل Lujun Fang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many real networks share three generic properties: they are scale-free, display a small-world effect, and show a power-law strength-degree correlation. In this paper, we propose a type of deterministically growing networks called Sierpinski networks, which are induced by the famous Sierpinski fractals and constructed in a simple iterative way. We derive analytical expressions for degree distribution, strength distribution, clustering coefficient, and strength-degree correlation, which agree well with the characterizations of various real-life networks. Moreover, we show that the introduced Sierpinski networks are maximal planar graphs.



قيم البحث

اقرأ أيضاً

We present a family of scale-free network model consisting of cliques, which is established by a simple recursive algorithm. We investigate the networks both analytically and numerically. The obtained analytical solutions show that the networks follo w a power-law degree distribution, with degree exponent continuously tuned between 2 and 3. The exact expression of clustering coefficient is also provided for the networks. Furthermore, the investigation of the average path length reveals that the networks possess small-world feature. Interestingly, we find that a special case of our model can be mapped into the Yule process.
In this paper, we define a stochastic Sierpinski gasket, on the basis of which we construct a network called random Sierpinski network (RSN). We investigate analytically or numerically the statistical characteristics of RSN. The obtained results reve al that the properties of RSN is particularly rich, it is simultaneously scale-free, small-world, uncorrelated, modular, and maximal planar. All obtained analytical predictions are successfully contrasted with extensive numerical simulations. Our network representation method could be applied to study the complexity of some real systems in biological and information fields.
A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-world effect, both of which play a significant role in the dynamical processes running on networks. Although various dynamical processes have been investigated in scale-free small-world networks, analytical research about random walks on such networks is much less. In this paper, we will study analytically the scaling of the mean first-passage time (MFPT) for random walks on scale-free small-world networks. To this end, we first map the classical Koch fractal to a network, called Koch network. According to this proposed mapping, we present an iterative algorithm for generating the Koch network, based on which we derive closed-form expressions for the relevant topological features, such as degree distribution, clustering coefficient, average path length, and degree correlations. The obtained solutions show that the Koch network exhibits scale-free behavior and small-world effect. Then, we investigate the standard random walks and trapping issue on the Koch network. Through the recurrence relations derived from the structure of the Koch network, we obtain the exact scaling for the MFPT. We show that in the infinite network order limit, the MFPT grows linearly with the number of all nodes in the network. The obtained analytical results are corroborated by direct extensive numerical calculations. In addition, we also determine the scaling efficiency exponents characterizing random walks on the Koch network.
Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possib ility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network that is guaranteed to become fractal by rewiring edges. Our results show that most of MD networks with different topologies are not fractal, which demonstrates that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation in similar degrees.
We investigate the accumulated wealth distribution by adopting evolutionary games taking place on scale-free networks. The system self-organizes to a critical Pareto distribution (1897) of wealth $P(m)sim m^{-(v+1)}$ with $1.6 < v <2.0$ (which is in agreement with that of U.S. or Japan). Particularly, the agents personal wealth is proportional to its number of contacts (connectivity), and this leads to the phenomenon that the rich gets richer and the poor gets relatively poorer, which is consistent with the Matthew Effect present in society, economy, science and so on. Though our model is simple, it provides a good representation of cooperation and profit accumulation behavior in economy, and it combines the network theory with econophysics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا