ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic corrections to the measured cosmological constant as a result of local inhomogeneity

180   0   0.0 ( 0 )
 نشر من قبل Ali Vanderveld
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the systematic inhomogeneity-induced correction to the cosmological constant that one would infer from an analysis of the luminosities and redshifts of Type Ia supernovae, assuming a homogeneous universe. The calculation entails a post-Newtonian expansion within the framework of second order perturbation theory, wherein we consider the effects of subhorizon density perturbations in a flat, dust dominated universe. Within this formalism, we calculate luminosity distances and redshifts along the past light cone of an observer. The resulting luminosity distance-redshift relation is fit to that of a homogeneous model in order to deduce the best-fit cosmological constant density Omega_Lambda. We find that the luminosity distance-redshift relation is indeed modified, by a small fraction of order 10^{-5}. When fitting this perturbed relation to that of a homogeneous universe, we find that the inferred cosmological constant can be surprisingly large, depending on the range of redshifts sampled. For a sample of supernovae extending from z=0.02 out to z=0.15, we find that Omega_Lambda=0.004. The value of Omega_Lambda has a large variance, and its magnitude tends to get larger for smaller redshifts, implying that precision measurements from nearby supernova data will require taking this effect into account. However, we find that this effect is likely too small to explain the observed value of Omega_Lambda=0.7. There have been previous claims of much larger backreaction effects. By contrast to those calculations, our work is directly related to how observers deduce cosmological parameters from astronomical data.

قيم البحث

اقرأ أيضاً

In this work, we investigate cosmologies where the gravitational constant varies in time, with the aim of explaining the accelerated expansion without a cosmological constant. We achieve this by considering a phenomenological extension to general rel ativity, modifying Einsteins field equations such that $G$ is a function of time, $G(t)$, and we preserve the geometrical consistency (Bianchi identity) together with the usual conservation of energy by introducing a new tensor field to the equations. In order to have concrete expressions to compare with cosmological data, we posit additional properties to this tensor field, in a way that it can be interpreted as a response of spacetime to a variation of $G$. Namely, we require that the energy this tensor represents is nonzero only when there is a time variation of $G$, and its energy depends on the scale factor only because of its coupling to $G$ and the matter and radiation energy densities. Focusing on the accelerated expansion period, we use type Ia supernovae and baryon acoustic oscillation data to determine the best fit of the cosmological parameters as well as the required variation in the gravitational constant. As a result, we find that it is possible to explain the accelerated expansion of the Universe with a variation of $G$ and no cosmological constant. The obtained variation of $G$ stays under 10 % of its current value in the investigated redshift range and it is consistent with the local observations of $dot{G}/G$.
Bouncing models have been proposed by many authors as a completion, or even as an alternative to inflation for the description of the very early and dense Universe. However, most bouncing models contain a contracting phase from a very large and raref ied state, where dark energy might have had an important role as it has today in accelerating our large Universe. In that case, its presence can modify the initial conditions and evolution of cosmological perturbations, changing the known results already obtained in the literature concerning their amplitude and spectrum. In this paper, we assume the simplest and most appealing candidate for dark energy, the cosmological constant, and evaluate its influence on the evolution of cosmological perturbations during the contracting phase of a bouncing model, which also contains a scalar field with a potential allowing background solutions with pressure and energy density satisfying p = w*rho, w being a constant. An initial adiabatic vacuum state can be set at the end of domination by the cosmological constant, and an almost scale invariant spectrum of perturbations is obtained for w~0, which is the usual result for bouncing models. However, the presence of the cosmological constant induces oscillations and a running towards a tiny red-tilted spectrum for long wavelength perturbations.
We present a comparative analysis of observational low-redshift background constraints on three candidate models for explaining the low-redshift acceleration of the universe. The generalized coupling model by Feng and Carloni and the scale invariant model by Maeder (both of which can be interpreted as bimetric theories) are compared to the traditional parametrization of Chevallier, Polarski and Linder. In principle the generalized coupling model, which in vacuum is equivalent to General Relativity, contains two types of vacuum energy: the usual cosmological constant plus a second contribution due to the matter fields. We show that the former is necessary for the model to agree with low-redshift observations, while there is no statistically significant evidence for the presence of the second. On the other hand the scale invariant model effectively has a time-dependent cosmological constant. In this case we show that a matter density $Omega_msim0.3$ is a relatively poor fit to the data, and the best-fit model would require a fluid with a much smaller density and a significantly positive equation of state parameter.
We construct a vacuum of string theory in which the magnitude of the vacuum energy is $< 10^{-123}$ in Planck units. Regrettably, the sign of the vacuum energy is negative, and some supersymmetry remains unbroken.
We present a non-supersymmetric theory with a naturally light dilaton. It is based on a 5D holographic description of a conformal theory perturbed by a close-to-marginal operator of dimension 4-epsilon, which develops a condensate. As long as the dim ension of the perturbing operator remains very close to marginal (even for large couplings) a stable minimum at hierarchically small scales is achieved, where the dilaton mass squared is suppressed by epsilon. At the same time the cosmological constant in this sector is also suppressed by epsilon, and thus parametrically smaller than in a broken SUSY theory. As a byproduct we also present an exact solution to the scalar-gravity system that can be interpreted as a new holographic realization of spontaneously broken conformal symmetry. Even though this metric deviates substantially from AdS space in the deep IR it still describes a non-linearly realized exactly conformal theory. We also display the effective potential for the dilaton for arbitrary holographic backgrounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا